Multiscale Analysis of 1-Rectifiable Measures

Matthew Badger
Joint work with Raanan Schul

Department of Mathematics
Stony Brook University

October 6, 2013

AMS Southeastern Sectional Meeting - Louisville, Kentucky

Special Session on Harmonic Analysis and PDE

Research Partially Supported by an NSF Postdoctoral Fellowship DMS 12-03497
Part I Rectifiable Measures

Part II L^2 Beta Numbers and Jones Functions

Part III New Results
General Definition

Let μ be a Borel measure on \mathbb{R}^n and let $1 \leq m \leq n - 1$. We say that μ is m-rectifiable if there exist countably many

- Lipschitz maps $f_i : [0, 1]^m \to \mathbb{R}^n$

such that

$$\mu \left(\mathbb{R}^n \setminus \bigcup_i f_i([0, 1]^m) \right) = 0.$$

(Federer’s terminology: \mathbb{R}^n is countably (μ, m)-rectifiable.)

Examples

- rectifiable curves/surfaces: $\mathcal{H}^m \subseteq f([0, 1]^m)$,
- (countably) rectifiable sets: $\sum_i \mathcal{H}^m \subseteq E_i, \quad E_i \subset f_i([0, 1]^m)$
- Dirac mass δ_x at $x \in \mathbb{R}^n$
Surprising Example

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure \(\mu \) on \(\mathbb{R}^n \) \((n \geq 2)\) with support \(\mathbb{R}^n \) such that \(\mu \perp \mathcal{H}^1 \), but \(\mu \) is 1-rectifiable.
Surprising Example

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.
Surprising Example

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.
Surprising Example

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.
Surprising Example

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.
Surprising Example

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.
Surprising Example

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.
Surprising Example

Theorem (Garnett-Killip-Schul 2010)

There exist a doubling measure μ on \mathbb{R}^n ($n \geq 2$) with support \mathbb{R}^n such that $\mu \perp \mathcal{H}^1$, but μ is 1-rectifiable.
Grades of Rectifiable Measures

\{ \text{m-rectifiable measures } \mu \text{ on } \mathbb{R}^n \} \cup \\uplus \\cup \\uplus \\cup \\uplus

\{ \text{m-rectifiable measures } \mu \text{ on } \mathbb{R}^n \text{ such that } \mu \ll \mathcal{H}^m \} \cup \\uplus

\{ \text{m-rectifiable measures } \mu \text{ on } \mathbb{R}^n \text{ of the form } \mu = \mathcal{H}^m \llcorner E \}
Absolutely Continuous Rectifiable Measures

The lower and upper (Hausdorff) m-density of a measure μ at x:

$$D_m(\mu, x) = \liminf_{r \downarrow 0} \frac{\mu(B(x, r))}{cmr^m} \quad D^m_m(\mu, x) = \limsup_{r \downarrow 0} \frac{\mu(B(x, r))}{cmr^m}.$$

Write $D_m(\mu, x)$, the m-density of μ at x, if $D_m(\mu, x) = D_m^m(\mu, x)$.

Theorem (Mattila 1975)

Suppose that $E \subset \mathbb{R}^n$ is Borel and $\mu = \mathcal{H}^m \res E$ is locally finite. Then μ is m-rectifiable if and only if $D_m(\mu, x) = 1$ μ-a.e.

Theorem (Preiss 1987)

Suppose that μ is a locally finite Borel measure on \mathbb{R}^n. Then μ is m-rectifiable and $\mu \ll \mathcal{H}^m$ if and only if $0 < D_m(\mu, x) < \infty$ μ-a.e.

There are additional characterizations (tangent measures, etc.)
General Rectifiable Measures

Problem
For all $1 \leq m \leq n - 1$, find necessary and sufficient conditions for a locally finite Borel measure μ on \mathbb{R}^n to be m-rectifiable.

- Do not assume $\mu \ll H^m$.

Theorem (B-Schul)

Necessary condition for the case $m = 1$ and $n \geq 2$:

If μ is 1-rectifiable, then at μ-almost every $x \in \mathbb{R}^n$,

- $\mu \ll B(x, r)$ concentrates mass around a line $\ell_{x,r}$ as $r \to 0$; or
- the density $\mu(B(x, r))/r \to \infty$ sufficiently fast as $r \to 0$.
Part I Rectifiable Measures

Part II L^2 Beta Numbers and Jones Functions

Part III New Results
L^2 Beta Numbers

Let μ be a locally finite Borel measure on \mathbb{R}^n and $Q \subset \mathbb{R}^n$ a cube. Define the L^2 beta number $\beta_2^2(\mu, Q) \in [0, 1]$ by

$$
\beta_2^2(\mu, Q) = \inf_{\ell} \int_Q \left(\frac{\text{dist}(x, \ell)}{\text{diam} Q} \right)^2 \frac{d\mu(x)}{\mu(Q)}
$$

where the infimum runs over all lines ℓ in \mathbb{R}^n.

\[\beta_2 = 0 \quad \beta_2 \text{ small} \quad \beta_2 \sim 1 \]
L^2 Jones Functions

A collection $\{w(\mu, Q)\}$ of weights \leadsto weighted L^2 Jones function:

$$J_2^w(\mu, r, x) = \sum_{\text{side } Q \leq r} \beta_2^2(\mu, 3Q)w(\mu, Q)\chi_Q(x).$$

Two Special Cases

$w(\mu, Q) \equiv 1 \leadsto \text{ordinary } L^2 \text{ Jones function}$

$$J_2(\mu, r, x) = \sum_{\text{side } Q \leq r} \beta_2^2(\mu, 3Q)\chi_Q(x).$$

$w(\mu, Q) \equiv \left(\frac{\mu(Q)}{\text{diam } Q}\right)^{-1} \leadsto \text{density-normalized } L^2 \text{ Jones function}$

$$\tilde{J}_2(\mu, r, x) = \sum_{\text{side } Q \leq r} \beta_2^2(\mu, 3Q)\frac{\text{diam } Q}{\mu(Q)}\chi_Q(x).$$
Ordinary Jones Function and Rectifiable Sets

A Borel measure μ on \mathbb{R}^n is m-Ahlfors regular if $\mu(B(x, r)) \sim r^m$ for all x in the support of μ and for all $0 < r < r_0(\mu)$.

Theorem (David-Semmes 1991)

Suppose $E \subset \mathbb{R}^n$ is closed and $\mu = \mathcal{H}^m \upharpoonright E$ is m-AR. Then μ is uniformly m-rectifiable if and only if

$$\int_{B(x_0, r)} J_2(\mu, r, x) d\mu(x) \lesssim r^m \text{ for all } x_0 \in E, \ 0 < r < \text{diam } E.$$

Theorem (Pajot 1997)

Suppose $K \subset \mathbb{R}^n$ is compact and $\mu = \mathcal{H}^m \upharpoonright K$.

- Suppose μ is m-AR. Then μ is m-rectifiable if and only if $J_2(\mu, x) < \infty \ \mu$-a.e.

- Suppose $\mathcal{H}^m(K) < \infty$. Then μ is m-rectifiable if both $D^m(\mu, x) > 0$ and $J_2(\mu, x) < \infty \ \mu$-a.e.
Part I Rectifiable Measures

Part II L^2 Beta Numbers and Jones Functions

Part III New Results
Necessary Conditions for 1-Rectifiable Measures

Theorem (B-Schul)

Let μ be a locally finite Borel measure on \mathbb{R}^n.

- If μ is 1-rectifiable, then

$$\tilde{J}_2(\mu, x) = \sum_{\text{side } Q \leq 1} \beta_2^2(\mu, 3Q) \frac{\text{diam } Q}{\mu(Q)} \chi_Q(x) < \infty \quad \mu\text{-a.e.}$$

- If μ is 1-rectifiable and $\mu \ll \mathcal{H}^1$, then

$$J_2(\mu, x) = \sum_{\text{side } Q \leq 1} \beta_2^2(\mu, 3Q) \chi_Q(x) < \infty \quad \mu\text{-a.e.}$$

Corollary (B-Schul + Pajot 1997)

Suppose $K \subset \mathbb{R}^n$ is compact and $\mathcal{H}^1(K) < \infty$. Then $\mu = \mathcal{H}^1 \res K$ 1-rectifiable if and only if $D^1(\mu, x) > 0$ and $J_2(\mu, x) < \infty \quad \mu\text{-a.e.}$
Proposition (B-Schul)

Suppose \(\nu(\mathbb{R}^n) < \infty, \Gamma \subset \mathbb{R}^n \) is a rectifiable curve, \(E \subset \Gamma \) is Borel and \(\nu(E \cap B(x, r)) \geq cr \) for all \(x \in E \) and \(0 < r \leq r_0 \). Then

\[
\int_E \tilde{J}_2(\nu, r_0, x) d\nu(x) \lesssim_{n,c} \mathcal{H}^1(\Gamma) + \nu(\mathbb{R}^n \setminus \Gamma).
\]

\(\tilde{J}_2 \) is defined by

\[
\tilde{J}_2(\nu, r_0, x) = \sum_{\text{side } Q \leq r_0} \beta_2^2(\nu, 3Q) \text{diam } Q \frac{\nu(E \cap Q)}{\nu(Q)}
\]

- Dyadic cubes \(Q \) with \(\nu(E \cap Q) > 0 \) belong to two classes:
 \(\{ \beta_2^2(\nu, 3Q) \lesssim \beta_\Gamma(3Q) \} \) and \(\{ \beta_\Gamma(3Q) \ll \beta_2^2(\nu, 3Q) \} \)

- Sum over first class \(\lesssim_n \mathcal{H}^1(\Gamma) \): Traveling Salesman Theorem for Rectifiable Curves (Jones 1990 in \(\mathbb{R}^2 \), Okikiolu 1992 in \(\mathbb{R}^n \))

- Sum over second class \(\lesssim_{n,c} \nu(\mathbb{R}^n \setminus \Gamma) \): New Estimate!
Future Directions

Problem
For all $1 \leq m \leq n - 1$, find necessary and sufficient conditions for a locally finite Borel measure μ on \mathbb{R}^n to be m-rectifiable.

- Do not assume $\mu \ll \mathcal{H}^m$.

Necessary Conditions
- If μ is m-rectifiable, then $D_m^m(\mu, x) > 0$ μ-a.e.
- If μ is 1-rectifiable, then $\tilde{J}_2(\mu, x) < \infty$ μ-a.e. (B-Schul)
- What happens for m-rectifiable measures, $m \geq 2$?

Sufficient Conditions
- If $D_1^1(\mu, x) > 0$ and $\tilde{J}_2(\mu, x) < \infty$ μ-a.e., is μ 1-rectifiable?
- Same ? is open for $\mu \ll \mathcal{H}^1$ (but settled for $\mu = \mathcal{H}^1 \restriction K$).