Preview: Structure of Measures

Three Measures. Let $a_i > 0$ be weights with $\sum_{i=1}^{\infty} a_i = 1$.
Let $\{x_i : i \geq 1\}, \{\ell_i : i \geq 1\}, \{S_i : i \geq 1\}$ be a dense set of points, unit line segments, unit squares in the plane.

$\mu_0 = \sum_{i=1}^{\infty} a_i \delta_{x_i}$
$\mu_1 = \sum_{i=1}^{\infty} a_i L^1|_{\ell_i}$
$\mu_2 = \sum_{i=1}^{\infty} a_i L^2|_{S_i}$

- μ_0, μ_1, μ_2 are probability measures on \mathbb{R}^2
- The support of μ is the smallest closed set carrying μ;
 $\text{spt } \mu_0 = \text{spt } \mu_1 = \text{spt } \mu_2 = \mathbb{R}^2$
- μ_i is carried by i-dimensional sets (points, lines, squares)
- The support of a measure is a rough approximation that hides the underlying structure of a measure
Part I. Curves

Part II. Subsets of Curves

Part III. Rectifiability of Measures
What is a curve?

A curve $\Gamma \subset \mathbb{R}^n$ is a **continuous image** of $[0, 1]$:

There exists a continuous map $f : [0, 1] \to \mathbb{R}^n$ such that $\Gamma = f([0, 1])$

A continuous map f with $\Gamma = f([0, 1])$ is called a **parameterization** of Γ

- There are curves which do not have a 1-1 parameterization
- There are curves which have topological dimension > 1

A curve Γ is **rectifiable** if $\exists f$ with $\sup_{x_0 \leq \cdots \leq x_k} \sum_{j=1}^k |f(x_j) - f(x_{j-1})| < \infty$
When I think of curves...
When is a set a curve?

Theorem (Hahn-Mazurkiewicz)

A nonempty set $\Gamma \subset \mathbb{R}^n$ is a curve if and only if

Γ is compact, connected, and locally connected

The proof of the forward direction is an exercise.

The proof of the reverse direction is content of the theorem: must **construct a parameterization** from only topological information.
Examples of sets which are not curves

Theorem (Hahn-Mazurkiewicz)

A nonempty set $\Gamma \subset \mathbb{R}^n$ is not a curve if and only if

Γ is not compact or disconnected or not locally connected

Unbounded

Not Closed

Disconnected

Not Locally Connected

a straight line

an open line segment

a Cantor set

a comb
When is a set a rectifiable curve?

Theorem (Ważewski)

Let $\Gamma \subset \mathbb{R}^n$ be nonempty. TFAE:

1. Γ is a rectifiable curve (finite total variation)
2. Γ is compact, connected, and $\mathcal{H}^1(\Gamma) < \infty$
3. Γ is a Lipschitz curve, i.e. there exists a Lipschitz continuous map $f : [0, 1] \to \mathbb{R}^n$ such that $\Gamma = f([0, 1])$

\mathcal{H}^1 denotes the 1-dimensional Hausdorff measure.

f is Lipschitz if $\exists C < \infty$ such that $|f(x) - f(y)| \leq C|x - y|$ for all x, y.

The proof of $(1) \Rightarrow (2)$ is an exercise.

The proof of $(3) \Rightarrow (1)$ is trivial.
\(\Gamma \subset \mathbb{R}^n \) is compact, connected, \(\mathcal{H}^1(\Gamma) < \infty \) \(\implies \) \(\Gamma \) is Lipschitz curve

Goal: build a parameterization for the set \(\Gamma \)
\(\Gamma \subset \mathbb{R}^n \) is compact, connected, \(\mathcal{H}^1(\Gamma) < \infty \) \(\implies \) \(\Gamma \) is Lipschitz curve

Step 1: approximate \(\Gamma \) by \(2^{-k} \)-nets \(V_k, k \geq 1 \)
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 1: approximate \(\Gamma \) by \(2^{-k} \)-nets \(V_k, k \geq 1 \)
$\Gamma \subset \mathbb{R}^n$ is compact, connected, $\mathcal{H}^1(\Gamma) < \infty \implies \Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k, $k \geq 1$
$\Gamma \subset \mathbb{R}^n$ is compact, connected, $\mathcal{H}^1(\Gamma) < \infty \implies \Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k, $k \geq 1$
Proof by Picture

\(\Gamma \subset \mathbb{R}^n \) is compact, connected, \(\mathcal{H}^1(\Gamma) < \infty \implies \Gamma \) is Lipschitz curve

Step 1: approximate \(\Gamma \) by \(2^{-k} \)-nets \(V_k, k \geq 1 \)
\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 1: approximate \(\Gamma \) by \(2^{-k} \)-nets \(V_k, k \geq 1 \)
$\Gamma \subset \mathbb{R}^n$ is compact, connected, $\mathcal{H}^1(\Gamma) < \infty \implies \Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k, $k \geq 1$
Proof by Picture

$\Gamma \subset \mathbb{R}^n$ is compact, connected, $\mathcal{H}^1(\Gamma) < \infty \implies \Gamma$ is Lipschitz curve

Step 1: approximate Γ by 2^{-k}-nets V_k, $k \geq 1$
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 1: approximate \(\Gamma \) by \(2^{-k} \)-nets \(V_k, k \geq 1 \)
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 1: approximate \(\Gamma \) by \(2^{-k}\)-nets \(V_k, \ k \geq 1 \)
Proof by Picture

Γ ⊂ \mathbb{R}^n is compact, connected, \mathcal{H}^1(\Gamma) < \infty \implies \Gamma is Lipschitz curve

Step 2: draw piecewise linear spanning tree \Gamma_k through \mathcal{V}_k
Proof by Picture

$\Gamma \subset \mathbb{R}^n$ is compact, connected, $\mathcal{H}^1(\Gamma) < \infty \implies \Gamma$ is Lipschitz curve

Step 2: draw piecewise linear spanning tree Γ_k through V_k
\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 2: draw piecewise linear spanning tree \(\Gamma_k \) through \(V_k \)
\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 2: draw piecewise linear spanning tree \(\Gamma_k \) through \(V_k \)
Proof by Picture

$\Gamma \subset \mathbb{R}^n$ is compact, connected, $\mathcal{H}^1(\Gamma) < \infty \implies \Gamma$ is Lipschitz curve

Step 2: draw piecewise linear spanning tree Γ_k through V_k
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
Γ ⊂ \mathbb{R}^n is compact, connected, \mathcal{H}^1(Γ) < ∞ \implies Γ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree \Gamma_k
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
Proof by Picture

$\Gamma \subset \mathbb{R}^n$ is compact, connected, $\mathcal{H}^1(\Gamma) < \infty \implies \Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
Proof by Picture

$\Gamma \subset \mathbb{R}^n$ is compact, connected, $\mathcal{H}^1(\Gamma) < \infty \implies \Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k
Proof by Picture

Γ ⊂ \(\mathbb{R}^n \) is compact, connected, \(\mathcal{H}^1(\Gamma) < \infty \) \(\implies \) Γ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } H^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
Proof by Picture

$\Gamma \subset \mathbb{R}^n$ is compact, connected, $\mathcal{H}^1(\Gamma) < \infty \implies \Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k
Proof by Picture

\(\Gamma \subset \mathbb{R}^n\) is compact, connected, \(\mathcal{H}^1(\Gamma) < \infty \implies \Gamma \) is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k\)
Proof by Picture

Γ ⊂ \mathbb{R}^n is compact, connected, \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve}

Step 3: pick a 2-1 tour of edges in the tree Γ_k
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \iff \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
\(\Gamma \subset \mathbb{R}^n \) is compact, connected, \(\mathcal{H}^1(\Gamma) < \infty \implies \Gamma \) is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree Γ_k
Proof by Picture

$\Gamma \subset \mathbb{R}^n$ is compact, connected, $\mathcal{H}^1(\Gamma) < \infty \implies \Gamma$ is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree Γ_k
Proof by Picture

\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } H^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Step 3: pick a 2-1 tour of edges in the tree \(\Gamma_k \)
Proof by Picture

\(\Gamma \subset \mathbb{R}^n \) is compact, connected, \(\mathcal{H}^1(\Gamma) < \infty \) \(\implies \) \(\Gamma \) is Lipschitz curve

Step 4: tour defines piecewise linear map \(f_k : [0, 1] \rightarrow \Gamma_k \)
\(\Gamma \subset \mathbb{R}^n \) is compact, connected, \(\mathcal{H}^1(\Gamma) < \infty \implies \Gamma \) is Lipschitz curve

Step 5: length of \(i \)-th edge \(\lesssim \mathcal{H}^1(E \cap B(v_i, \frac{1}{4} \cdot 2^{-k})) \)
\[\Gamma \subset \mathbb{R}^n \text{ is compact, connected, } \mathcal{H}^1(\Gamma) < \infty \implies \Gamma \text{ is Lipschitz curve} \]

Conclusion: \(\text{Lip } f_k \leq 32\mathcal{H}^1(\Gamma) \). Hence \(f_{kj} \implies f : [0, 1] \to \Gamma \text{ Lipschitz} \)
Open Problem #1

Theorem (Ważyewski)

Let $\Gamma \subset \mathbb{R}^n$ be nonempty. TFAE:

1. Γ is a rectifiable curve (finite total variation)
2. Γ is compact, connected, and $\mathcal{H}^1(\Gamma) < \infty$
3. Γ is a Lipschitz curve, i.e. there exists a Lipschitz continuous map $f : [0, 1] \to \mathbb{R}^n$ such that $\Gamma = f([0, 1])$

Generalize Ważyewski’s theorem to higher dimensional curves
Snowflakes and Squares
Snowflakes and Squares

Open Problem (#2)

For each real \(s \in (1, \infty) \), characterize curves \(\Gamma \subset \mathbb{R}^n \) with \(\mathcal{H}^s(\Gamma) < \infty \)

Open Problem (#3)

For each real \(s \in (1, \infty) \), characterize \((1/s)\)-Hölder curves, i.e. sets that can be presented as \(h([0, 1]) \) for some map \(h : [0, 1] \to \mathbb{R}^n \) with

\[
|h(x) - h(y)| \leq C|x - y|^{1/s}
\]

Open Problem (#4)

For each integer \(m \geq 2 \), characterize Lipschitz \(m \)-cubes, i.e. sets that can be presented as \(f([0, 1]^m) \) for some Lipschitz map \(f : [0, 1]^m \to \mathbb{R}^n \).
Obstruction to a Hölder Ważewski Theorem

- Every \((1/s)\)-Hölder curve has \(\mathcal{H}^s(\Gamma) < \infty\)
- There are curves \(\Gamma\) with \(\mathcal{H}^s(\Gamma) < \infty\) that are not \((1/s)\)-Hölder.

Theorem (B, Naples, Vellis 2018)

For all \(s > 1\), there exists a curve \(\Gamma \subset \mathbb{R}^n\) such that \(\mathcal{H}^s(\Gamma \cap B(x, r)) \sim r^s\), but \(\Gamma\) is not a \((1/s)\)-Hölder curve.

Idea.

Look at the cylinder \(C \times [0, 1] \subset \mathbb{R}^2\) over the standard “middle thirds” Cantor set \(C \subset \mathbb{R}\). Adjoining the line segment \([0, 1] \times \{0\}\) makes the set connected, but it is not locally connected. Adjoining additional intervals \(I_i \times \{t_j\}\) on a dense set of heights (“rungs”) makes the set locally connected. We call this a **Cantor ladder**.

A modified version of this gives the desired set.
Obstruction to a Hölder Ważewski Theorem

- Every $(1/s)$-Hölder curve has $\mathcal{H}^s(\Gamma) < \infty$
- There are curves Γ with $\mathcal{H}^s(\Gamma) < \infty$ that are not $(1/s)$-Hölder.

Theorem (B, Naples, Vellis 2018)

For all $s > 1$, there exists a curve $\Gamma \subset \mathbb{R}^n$ such that $\mathcal{H}^s(\Gamma \cap B(x, r)) \sim r^s$, but Γ is not a $(1/s)$-Hölder curve.

Idea.

Look at the cylinder $C \times [0, 1] \subset \mathbb{R}^2$ over the standard “middle thirds” Cantor set $C \subset \mathbb{R}$. Adjoining the line segment $[0, 1] \times \{0\}$ makes the set connected, but it is not locally connected. Adjoining additional intervals $I_i \times \{t_j\}$ on a dense set of heights (“rungs”) makes the set locally connected. We call this a Cantor ladder.

A modified version of this gives the desired set.
Sufficient conditions for Hölder curves

Theorem (Remes 1998)

Let $S \subset \mathbb{R}^n$ be a self-similar set satisfying the open set condition. If S is connected, then S is a $(1/s)$-Hölder curve, $s = \dim_H S$.

A set $E \subset \mathbb{R}^n$ is ε-flat if for every $x \in E$ and $0 < r \leq \text{diam } E$, there exists a line ℓ such that $\text{dist}(x, \ell) \leq \varepsilon r$ for all $x \in E \cap B(x, r)$.

Theorem (B, Naples, Vellis 2018)

Assume that $E \subset \mathbb{R}^n$ is ε-flat with $\varepsilon \ll 1$. If E is connected, compact, $\mathcal{H}^s(E) < \infty$ and $\mathcal{H}^s(E \cap B(x, r)) \gtrsim r^s$, then E is a $(1/s)$-Hölder curve with a one-to-one parameterization.
Sufficient conditions for Hölder curves

Theorem (Remes 1998)

Let $S \subset \mathbb{R}^n$ be a self-similar set satisfying the open set condition. If S is connected, then S is a $(1/s)$-Hölder curve, $s = \dim_H S$.

A set $E \subset \mathbb{R}^n$ is ε-flat if for every $x \in E$ and $0 < r \leq \text{diam } E$, there exists a line ℓ such that $\text{dist}(x, \ell) \leq \varepsilon r$ for all $x \in E \cap B(x, r)$.

Theorem (B, Naples, Vellis 2018)

Assume that $E \subset \mathbb{R}^n$ is ε-flat with $\varepsilon \ll 1$. If E is connected, compact, $\mathcal{H}^s(E) < \infty$ and $\mathcal{H}^s(E \cap B(x, r)) \gtrsim r^s$, then E is a $(1/s)$-Hölder curve with a one-to-one parameterization.
Part I. Curves

Part II. Subsets of Curves

Part III. Rectifiability of Measures
Analyst’s Traveling Salesman Problem

Given a bounded set \(E \subset \mathbb{R}^n \) (an infinite list of cities),
decide whether or not \(E \) is a subset of a rectifiable curve.

If so, construct a rectifiable curve \(\Gamma \) containing \(E \) that is
short as possible.

This is solved for

- \(E \) in \(\mathbb{R}^2 \) by P. Jones (1990)
- \(E \) in \(\mathbb{R}^n \) by K. Okikiolu (1992)
- \(E \) in \(\ell_2 \) by R. Schul (2007)
- \(E \) in first Heisenberg group \(\mathbb{H}^1 \) by S. Li and R. Schul (2016)
- \(E \) in Laakso-type spaces by G.C. David and R. Schul (2017)
- \(E \) is Carnot group by V. Chousionis, S. Li, S. Zimmerman (2018):
 necessary condition only
Not contained in a rectifiable curve: a countable compact set with one accumulation point

For each \(k \geq 2 \), choose \(m_k = k^2 \) so that \(\sum_{k=2}^{\infty} m_k^{-1} < \infty \). Arrange squares \(S_k \) with side length \(m_k^{-1} \) so that one side of each square lies on a given line; separate \(S_k \) and \(S_{k+1} \) by distance \(m_k^{-1} \). Let \(V_k \) be collection of \(m_k^2 \) points in \(S_k \) separated by distance at least \(m_k^{-2} \). Let \(E \) be the closure of \(\bigcup_{k=2}^{\infty} V_k \).

Suppose \(\Gamma = f([0, 1]) \supseteq E \) for some \(f \) with \(|x - y| \geq L^{-1}|f(x) - f(y)| \).
To contain \(V_k \), the curve \(\Gamma \) must cross \(m_k^2 - 1 \) gaps of length at least \(m_k^{-2} \). Requires at least \(\frac{1}{2} L^{-1} \) of length in the domain of \(f \) by Lipschitz condition.
So for \(\Gamma \) to contain \(E \) there would have to be infinite length in the domain of \(f \), which is a contradiction.
Not contained in a rectifiable curve: a countable compact set with one accumulation point

For each $k \geq 2$, choose $m_k = k^2$ so that $\sum_{k=2}^{\infty} m_k^{-1} < \infty$. Arrange squares S_k with side length m_k^{-1} so that one side of each square lies on a given line; separate S_k and S_{k+1} by distance m_k^{-1}. Let V_k be collection of m_k^2 points in S_k separated by distance at least m_k^{-2}. Let E be the closure of $\bigcup_{k=2}^{\infty} V_k$.

Suppose $\Gamma = f([0, 1]) \supset E$ for some f with $|x - y| \geq L^{-1}|f(x) - f(y)|$.

To contain V_k, the curve Γ must cross $m_k^2 - 1$ gaps of length at least m_k^{-2}. Requires at least $\frac{1}{2}L^{-1}$ of length in the domain of f by Lipschitz condition.

So for Γ to contain E there would have to be infinite length in the domain of f, which is a contradiction.
Not contained in a rectifiable curve: a countable compact set with one accumulation point

For each $k \geq 2$, choose $m_k = k^2$ so that $\sum_{k=2}^{\infty} m_k^{-1} < \infty$. Arrange squares S_k with side length m_k^{-1} so that one side of each square lies on a given line; separate S_k and S_{k+1} by distance m_k^{-1}. Let V_k be collection of m_k^2 points in S_k separated by distance at least m_k^{-2}. Let E be the closure of $\bigcup_{k=2}^{\infty} V_k$.

Suppose $\Gamma = f([0, 1]) \supset E$ for some f with $|x - y| \geq L^{-1}|f(x) - f(y)|$.

To contain V_k, the curve Γ must cross $m_k^2 - 1$ gaps of length at least m_k^{-2}. Requires at least $\frac{1}{2}L^{-1}$ of length in the domain of f by Lipschitz condition.

So for Γ to contain E there would have to be infinite length in the domain of f, which is a contradiction.
Not contained in a rectifiable curve:
a countable compact set with one accumulation point

For each $k \geq 2$, choose $m_k = k^2$ so that $\sum_{k=2}^{\infty} m_k^{-1} < \infty$. Arrange squares S_k with side length m_k^{-1} so that one side of each square lies on a given line; separate S_k and S_{k+1} by distance m_k^{-1}. Let V_k be collection of m_k^2 points in S_k separated by distance at least m_k^{-2}. Let E be the closure of $\bigcup_{k=2}^{\infty} V_k$.

Suppose $\Gamma = f([0, 1]) \supset E$ for some f with $|x - y| \geq L^{-1}|f(x) - f(y)|$

To contain V_k, the curve Γ must cross $m_k^2 - 1$ gaps of length at least m_k^{-2}. Requires at least $\frac{1}{2} L^{-1}$ of length in the domain of f by Lipschitz condition.

So for Γ to contain E there would have to be infinite length in the domain of f, which is a contradiction.
Not contained in a rectifiable curve:
a countable compact set with one accumulation point

For each \(k \geq 2 \), choose \(m_k = k^2 \) so that \(\sum_{k=2}^{\infty} \frac{1}{m_k} < \infty \). Arrange squares \(S_k \) with side length \(\frac{1}{m_k} \) so that one side of each square lies on a given line; separate \(S_k \) and \(S_{k+1} \) by distance \(\frac{1}{m_k} \). Let \(V_k \) be collection of \(m_k \) points in \(S_k \) separated by distance at least \(\frac{1}{m_k^2} \). Let \(E \) be the closure of \(\bigcup_{k=2}^{\infty} V_k \).

Suppose \(\Gamma = f([0,1]) \supset E \) for some \(f \) with \(|x - y| \geq L^{-1} |f(x) - f(y)| \).

To contain \(V_k \), the curve \(\Gamma \) must cross \(m_k^2 - 1 \) gaps of length at least \(\frac{1}{m_k^2} \). Requires at least \(\frac{1}{2} L^{-1} \) of length in the domain of \(f \) by Lipschitz condition.

So for \(\Gamma \) to contain \(E \) there would have to be infinite length in the domain of \(f \), which is a contradiction.
Not contained in a rectifiable curve: a countable compact set with one accumulation point

For each \(k \geq 2 \), choose \(m_k = k^2 \) so that \(\sum_{k=2}^{\infty} m_k^{-1} < \infty \). Arrange squares \(S_k \) with side length \(m_k^{-1} \) so that one side of each square lies on a given line; separate \(S_k \) and \(S_{k+1} \) by distance \(m_k^{-1} \). Let \(V_k \) be collection of \(m_k^2 \) points in \(S_k \) separated by distance at least \(m_k^{-2} \). Let \(E \) be the closure of \(\bigcup_{k=2}^{\infty} V_k \).

Suppose \(\Gamma = f([0, 1]) \supset E \) for some \(f \) with \(|x - y| \geq L^{-1}|f(x) - f(y)| \).

To contain \(V_k \), the curve \(\Gamma \) must cross \(m_k^2 - 1 \) gaps of length at least \(m_k^{-2} \). Requires at least \(\frac{1}{2}L^{-1} \) of length in the domain of \(f \) by Lipschitz condition.

So for \(\Gamma \) to contain \(E \) there would have to be infinite length in the domain of \(f \), which is a contradiction.
For any nonempty set $E \subset \mathbb{R}^n$ and bounded “window” $Q \subset \mathbb{R}^n$, the **Jones beta number** of E in Q is

$$\beta_E(Q) := \inf_{\text{line } \ell} \sup_{x \in E \cap Q} \frac{\text{dist}(x, \ell)}{\text{diam } Q} \in [0, 1].$$

If $E \cap Q = \emptyset$, we also define $\beta_E(Q) = 0$.
Theorem (P. Jones (1990), K. Okikiolu (1992))

Let $E \subset \mathbb{R}^n$ be a bounded set. Then E is contained in a rectifiable curve if and only if

$$S_E := \sum_{\text{dyadic } Q} \beta_E(3Q)^2 \text{diam } Q < \infty$$

More precisely:

1. If $S_E < \infty$, then there is a curve $\Gamma \supset E$ such that
 $$\mathcal{H}^1(\Gamma) \lesssim_n \text{diam } E + S_E.$$
2. If Γ is a curve containing E, then $\text{diam } E + S_E \lesssim_n \mathcal{H}^1(\Gamma)$.
Open Problem #5

Theorem (P. Jones (1990), K. Okikiolu (1992))

Let $E \subset \mathbb{R}^n$ be a bounded set. Then E is contained in a rectifiable curve if and only if

$$S_E := \sum_{\text{dyadic } Q} \beta_E(3Q)^2 \text{diam } Q < \infty$$

More precisely:

1. If $S_E < \infty$, then there is a curve $\Gamma \supset E$ such that $\mathcal{H}^1(\Gamma) \lesssim_n \text{diam } E + S_E$.

2. If Γ is a curve containing E, then $\text{diam } E + S_E \lesssim_n \mathcal{H}^1(\Gamma)$.

Find characterizations of subsets of other nice families of sets.
Hölder Traveling Salesman Theorem

Theorem (B, Naples, Vellis 2018)

For all $s > 1$, there exists a constant $\beta_0 = \beta_0(s, n) > 0$ such that:

If $E \subset \mathbb{R}^n$ is a bounded set and

$$\sum_{\substack{Q \text{ dyadic} \\ \beta_E(3Q) \geq \beta_0}} (\text{diam } Q)^s < \infty,$$

then E is contained in a $(1/s)$-Hölder curve.

Corollary

Assume $s > 1$. If $E \subset \mathbb{R}^n$ is a bounded set and

$$\sum_{\substack{Q \text{ dyadic} \\ \text{side } Q \leq 1}} \beta_E(3Q)^2(\text{diam } Q)^s < \infty,$$

then E is contained in a $(1/s)$-Hölder curve.
Hölder Traveling Salesman Theorem

Theorem (B, Naples, Vellis 2018)

For all $s > 1$, there exists a constant $\beta_0 = \beta_0(s, n) > 0$ such that:

If $E \subset \mathbb{R}^n$ is a bounded set and

$$\sum_{\substack{Q \text{ dyadic} \\beta_E(3Q) \geq \beta_0}} (\text{diam } Q)^s < \infty,$$

then E is contained in a $(1/s)$-Hölder curve.

Remarks

- There is a version of the theorem in infinite-dimensional Hilbert space
- Construction of approximating curves Γ_k are similar to case $s = 1$
- But unlike the case $s = 1$, we do not have Ważewski’s theorem!!!
- So we have reimagine Jones’ proof of the traveling salesman construction and build explicit parameterization of the Γ_k
- The condition is not necessary (e.g. fails for a Sierpinski carpet)
Part I. Curves

Part II. Subsets of Curves

Part III. Rectifiability of Measures
Measure Theorist’s Traveling Salesman Problem

Given a finite Borel measure μ on \mathbb{R}^n with bounded support ($\iff \mu(\mathbb{R}^n \setminus B) = 0$ for some bounded set B), decide whether or not μ is carried by a rectifiable curve.

If so, construct a rectifiable curve Γ carrying μ, i.e. $\mu(\mathbb{R}^n \setminus \Gamma) = 0$.

This is solved for

- μ such that $\mu(B(x, r)) \sim r$ for $x \in \text{spt} \mu$ by Lerman (2003)
- μ any finite Borel measure by B and Schul (2017)
Non-homogeneous L^2 Jones β numbers

Let μ be a Radon measure on \mathbb{R}^n. For every cube Q, define

$$\beta_2(\mu, 3Q) = \inf_{L} \beta_2(\mu, 3Q, L) \in [0, 1],$$

where

$$\beta_2(\mu, 3Q, L)^2 = \int_{3Q} \left(\frac{\text{dist}(x, L)}{\text{diam } 3Q} \right)^2 \frac{d\mu(x)}{\mu(3Q)}.$$

“Non-homogeneous” refers to the normalization $1/\mu(3Q)$.
Non-homogeneous L^2 Jones β numbers

Let μ be a Radon measure on \mathbb{R}^n. For every cube Q, define

$$\beta_2(\mu, 3Q) = \inf_{L \in [0, 1]} \beta_2(\mu, 3Q, L),$$

where

$$\beta_2(\mu, 3Q, L)^2 = \int_{3Q} \left(\frac{\text{dist}(x, L)}{\text{diam } 3Q} \right)^2 \frac{d\mu(x)}{\mu(3Q)}$$

\[\beta_2 = 0\]

\[\beta_2 \text{ small}\]

\[\beta_2 \sim 1\]
Traveling Salesman for Ahlfors Regular Measures

Theorem (Lerman 2003)

Let μ be a finite measure on \mathbb{R}^n with bounded support. Assume that

$$\mu(B(x, r)) \sim r \quad \text{for all } x \in \text{spt } \mu \text{ and } 0 < r \leq 1.$$

Then there is a rectifiable curve Γ such that $\mu(\mathbb{R}^n \setminus \Gamma) = 0$ if and only if

$$\sum_{\text{dyadic } Q} \beta_2(\mu, 3Q)^2 \text{diam } Q < \infty.$$

Theorem (Martikainen and Orponen 2018)

There exists a Borel probability ν on \mathbb{R}^2 with bounded support such that

$$\sum_{\text{dyadic } Q} \beta_2(\nu, 3Q)^2 \text{diam } Q < \infty$$

but ν is purely 1-unrectifiable, i.e. $\nu(\Gamma) = 0$ for every rectifiable curve Γ.
Traveling Salesman for Ahlfors Regular Measures

Theorem (Lerman 2003)

Let μ be a finite measure on \mathbb{R}^n with bounded support. Assume that

$$\mu(B(x, r)) \sim r \text{ for all } x \in \text{spt } \mu \text{ and } 0 < r \leq 1.$$

Then there is a rectifiable curve Γ such that $\mu(\mathbb{R}^n \setminus \Gamma) = 0$ if and only if

$$\sum_{\text{dyadic } Q} \beta_2(\mu, 3Q)^2 \text{diam } Q < \infty.$$

Theorem (Martikainen and Orponen 2018)

There exists a Borel probability ν on \mathbb{R}^2 with bounded support such that

$$\sum_{\text{dyadic } Q} \beta_2(\nu, 3Q)^2 \text{diam } Q < \infty$$

but ν is purely 1-unrectifiable, i.e. $\nu(\Gamma) = 0$ for every rectifiable curve Γ.

Anisotropic L^2 Jones β numbers (B-Schul 2017)

Given dyadic cube Q in \mathbb{R}^n, $\Delta^*(Q)$ denotes a subdivision of $Q^* = 1600\sqrt{n}Q$ into dyadic cubes R of same / previous generation as Q s.t. $3R \subseteq Q^*$.

For every Radon measure μ on \mathbb{R}^n and every dyadic cube Q, we define $\beta^\ast\ast_2(\mu, Q)^2 = \inf_{\text{line } L} \max_{R \in \Delta^*(Q)} \beta_2(\mu, 3R, L)^2$, where

$$\beta_2(\mu, 3R, L)^2 = \int_{3R} \left(\frac{\text{dist}(x, L)}{\text{diam } 3R} \right)^2 \frac{d\mu(x)}{\mu(3R)}$$
Traveling Salesman Theorem for Measures

Theorem (B and Schul 2017)

Let μ be a finite measure on \mathbb{R}^n with bounded support. Then there is a rectifiable curve Γ such that $\mu(\mathbb{R}^n \setminus \Gamma) = 0$ if and only if

$$\sum_{\text{dyadic } Q} \beta^{**}_2(\mu, Q)^2 \text{diam } Q < \infty.$$

- Proof uses both halves of the traveling salesman theorem curves
- For the sufficient half, need extension of the traveling salesman construction without requirement $V_{k+1} \supset V_k$ (see B-Schul 2017)
- Using similar techniques, we can also get a characterization of countably 1-rectifiable Radon measures
Identification of 1-rectifiable Radon measures

For any Radon measure μ on \mathbb{R}^n and $x \in \mathbb{R}^n$, the lower density is:

$$D^1(\mu, x) \equiv \liminf_{r \downarrow 0} \frac{\mu(B(x, r))}{2r} \in [0, \infty]$$

and the anisotropic square function is:

$$J^*_2(\mu, x) \equiv \sum_{\text{dyadic } Q \text{ such that } \mu(Q) \leq \beta_2^* \text{ and } \text{diam } Q \leq 1} \beta_2^* \mu(Q)^2 \frac{\text{diam } Q}{\mu(Q)} \chi_Q(x) \in [0, \infty]$$

Theorem (B and Schul 2017)

If μ is a Radon measure on \mathbb{R}^n, then

$\mu \subseteq \{x : D^1(\mu, x) > 0 \text{ and } J^*_2(\mu, x) < \infty\}$ is countably 1-rectifiable

$\mu \subseteq \{x : D^1(\mu, x) = 0 \text{ or } J^*_2(\mu, x) = \infty\}$ is purely 1-unrectifiable
Open Problem #6

Given a measurable space \((X, \mathcal{M})\) and a family of sets \(\mathcal{N}\), every \(\sigma\)-finite measure \(\mu\) on \(\mathbb{R}^n\) decomposes as \(\mu = \mu_\mathcal{N} + \mu_\perp\mathcal{N}\), where

- \(\mu_\mathcal{N}\) is carried by \(\mathcal{N}\): \(\mu_\mathcal{N}(X \setminus \bigcup_{i=1}^{\infty} \Gamma_i) = 0\) for some \(\Gamma_i \in \mathcal{N}\)
- \(\mu_\perp\mathcal{N}\) is singular to \(\mathcal{N}\): \(\mu_\perp\mathcal{N}(\Gamma) = 0\) for all \(\Gamma \in \mathcal{N}\).

Identification Problem:
Given \((X, \mathcal{M})\), \(\mathcal{N} \subset \mathcal{M}\), and of \(\mathcal{F}\) a family of \(\sigma\)-finite measures on \(\mathcal{M}\), find properties \(P(\mu, x)\) and \(Q(\mu, x)\) defined for all \(\mu \in \mathcal{F}\) and \(x \in X\) such that
\[
\mu_\mathcal{N} = \mu \perp \{x : P(\mu, x)\} \quad \text{and} \quad \mu_\perp\mathcal{N} = \mu \perp \{x : Q(\mu, x)\}
\]

An important case is \(X = \mathbb{R}^n\), \(\mathcal{N}\) is Lipschitz images of \(\mathbb{R}^m\) \((m \geq 2)\), and \(\mathcal{F}\) is Radon measures on \(\mathbb{R}^n\)
Open Problem #6

Given a measurable space \((X, \mathcal{M})\) and a family of sets \(\mathcal{N}\), every \(\sigma\)-finite measure \(\mu\) on \(\mathbb{R}^n\) decomposes as \(\mu = \mu_\mathcal{N} + \mu_\perp\mathcal{N}\), where

- \(\mu_\mathcal{N}\) is carried by \(\mathcal{N}\): \(\mu_\mathcal{N}(X \setminus \bigcup_{i=1}^\infty \Gamma_i) = 0\) for some \(\Gamma_i \in \mathcal{N}\)
- \(\mu_\perp\mathcal{N}\) is singular to \(\mathcal{N}\): \(\mu_\perp\mathcal{N}(\Gamma) = 0\) for all \(\Gamma \in \mathcal{N}\).

Identification Problem:

Given \((X, \mathcal{M})\), \(\mathcal{N} \subset \mathcal{M}\), and of \(\mathcal{F}\) a family of \(\sigma\)-finite measures on \(\mathcal{M}\), find properties \(P(\mu, x)\) and \(Q(\mu, x)\) defined for all \(\mu \in \mathcal{F}\) and \(x \in X\) such that

\[\mu_\mathcal{N} = \mu \perp \{x : P(\mu, x)\}\] and \[\mu_\perp\mathcal{N} = \mu \perp \{x : Q(\mu, x)\}\]

An important case is \(X = \mathbb{R}^n\), \(\mathcal{N}\) is Lipschitz images of \(\mathbb{R}^m\) \((m \geq 2)\), and \(\mathcal{F}\) is Radon measures on \(\mathbb{R}^n\).
Open Problem #6

Given a measurable space \((X, \mathcal{M})\) and a family of sets \(\mathcal{N}\), every \(\sigma\)-finite measure \(\mu\) on \(\mathbb{R}^n\) decomposes as \(\mu = \mu_{\mathcal{N}} + \mu_{\perp\mathcal{N}}\), where

- \(\mu_{\mathcal{N}}\) is carried by \(\mathcal{N}\): \(\mu_{\mathcal{N}}(X \setminus \bigcup_{i=1}^{\infty} \Gamma_i) = 0\) for some \(\Gamma_i \in \mathcal{N}\)
- \(\mu_{\perp\mathcal{N}}\) is singular to \(\mathcal{N}\): \(\mu_{\perp\mathcal{N}}(\Gamma) = 0\) for all \(\Gamma \in \mathcal{N}\).

Identification Problem:

Given \((X, \mathcal{M}), \mathcal{N} \subset \mathcal{M}\), and of \(\mathcal{F}\) a family of \(\sigma\)-finite measures on \(\mathcal{M}\), find properties \(P(\mu, x)\) and \(Q(\mu, x)\) defined for all \(\mu \in \mathcal{F}\) and \(x \in X\) such that \(\mu_{\mathcal{N}} = \mu \perp \{x : P(\mu, x)\}\) and \(\mu_{\perp\mathcal{N}} = \mu \perp \{x : Q(\mu, x)\}\)

An important case is \(X = \mathbb{R}^n\), \(\mathcal{N}\) is Lipschitz images of \(\mathbb{R}^m\) (\(m \geq 2\)), and \(\mathcal{F}\) is Radon measures on \(\mathbb{R}^n\).
Criteria for fractional rectifiability

A model for **fractional rectifiability** based on Hölder continuous images of \mathbb{R}^m in \mathbb{R}^n was proposed by Martín and Mattila (1993,2000).

Theorem (B, Vellis 2018)

Let $s > 1$ and $m \leq t < s$. Assume that μ is a Radon measure on \mathbb{R}^n such that

$$0 < \liminf_{r \downarrow 0} \frac{\mu(B(x,r))}{r^t} \leq \limsup_{r \downarrow 0} \frac{\mu(B(x,r))}{r^t} < \infty \quad \mu\text{-a.e. } x.$$

Then μ is carried by (m/s)-Hölder continuous images of $[0, 1]^m$.

Theorem (B, Naples, Vellis 2018)

Let $s > 1$. Assume that μ is a Radon measure on \mathbb{R}^n such that

$$\limsup_{r \downarrow 0} \frac{\mu(B(x,2r))}{\mu(B(x,r))} < \infty \quad \mu\text{-a.e. } x, \quad \text{and}$$

$$\int_0^1 \beta_2(\mu, B(x,r))^\alpha \frac{r^s}{\mu(B(x,r))} \frac{dr}{r} < \infty \quad \mu\text{-a.e. } x.$$

Then μ is carried by $(1/s)$-Hölder curves.
Thank you for listening!