Square Packings and Rectifiable Doubling Measures

Matthew Badger

University of Connecticut
Department of Mathematics

Joint work with Raanan Schul (Stony Brook University)

Séminare Analysis Harmonique Université Paris-Saclay (Orsay) December 2023

Research Partially Supported by NSF DMS 2154047

Part I Background and Related Results (not comprehensive)

Part II "Square Packing Construction" of Lipschitz Maps

Part III Rectifiable Doubling Measures in Ahlfors Regular Spaces

Lipschitz Images and Rectifiability

Let \mathbb{M} and \mathbb{X} be metric spaces.

Think of \mathbb{M} as the model space and \mathbb{X} as the target space.
Lipschitz image problem For which sets $F \subset \mathbb{X}$, does there exist a Lipschitz map $f: \mathbb{M} \rightarrow \mathbb{X}$ such that $F=f(\mathbb{M})$?

Lipschitz fragment problem For which sets $F \subset \mathbb{X}$, does there exist a set $E \subset \mathbb{M}$ and a Lipschitz map $f: E \rightarrow \mathbb{X}$ such that $F=f(E)$?

Rectifiable set problem For which sets $F \subset \mathbb{X}$, does there exist a sequence of Lipschitz maps $f_{i}: E_{i} \subset \mathbb{M} \rightarrow \mathbb{X}$ such that $F=\bigcup_{1}^{\infty} f_{i}\left(E_{i}\right)$?

Rectifiable measure problem For which Radon measures μ on \mathbb{X}, is there a sequence of Lipschitz maps such that $\mu\left(\mathbb{X} \backslash \bigcup_{1}^{\infty} f_{i}\left(E_{i}\right)\right)=0$?

Rectifiable Curves and Analyst's Traveling Salesman

$\mathbb{M}=[0,1]$: a Lipschitz image $f([0,1])$ is called a rectifiable curve.
Theorem (Ważewski 1927)
In any metric space \mathbb{X}, a set $F \subset \mathbb{X}$ is a rectifiable curve if and only if F is compact, F is connected, and Hausdorff measure $\mathcal{H}^{1}(F)<\infty$.

Theorem (Jones-Okikiolu-Schul-Badger-McCurdy 1990-2023)

In any finite-dimensional Banach space or in any Hilbert space \mathbb{X}, a set $F \subset \mathbb{X}$ is contained in a rectifiable curve if and only if

$$
\operatorname{diam} F<\infty \quad \text { and } \quad \sum_{Q} \beta_{F}^{2}(Q) \operatorname{diam} Q<\infty
$$

where Q ranges over an appropriate family of "dyadic locations and scales" and $\beta_{F}(Q)$ measures how close $F \cap 3 Q$ is to a line relative to diam Q.

Theorem (Li 2022, earlier work by Ferrari-Franchi-Pajot, ...)
\exists characterization of subsets of rectifiable curves in Carnot groups of step ≥ 2

Characterization of 1-Rectifiable Measures in

Euclidean Spaces and Carnot Groups

A Radon measure μ on \mathbb{X} is $\mathbf{1}$-rectifiable in the sense of Federer if there exist Lipschitz $f_{i}: E_{i} \subset[0,1] \rightarrow \mathbb{X}$ such that $\mu\left(\mathbb{X} \backslash \bigcup_{1}^{\infty} f_{i}\left(E_{i}\right)\right)=0$.
Theorem (Badger-Schul 2017)
Let $\mathbb{X}=\mathbb{R}^{d}$ for some $d \geq 2$. A Radon measure μ is 1 -rectifiable iff

$$
\liminf _{r \leq 0} \frac{\mu(B(x, r))}{r}>0 \quad \text { and } \quad \sum_{Q} \beta_{\mu}^{*}(Q)^{2} \operatorname{diam} Q \frac{\chi_{Q}(x)}{\mu(Q)}<\infty \text { at } \mu \text {-a.e. } x \text {, }
$$

where $\beta_{\mu}^{*}(Q)$ is an anisotropic beta number associated to $\mu\llcorner 1600 Q$.

Theorem (Badger-Li-Zimmerman 2023)

Let $\mathbb{X}=\mathbb{G}=$ Carnot group of step $s \geq 2$. A Radon measure μ is 1-rectifiable iff

$$
\liminf _{r+0} \frac{\mu(B(x, r))}{r}>0 \text { and } \sum_{Q} \beta_{\mu}^{*}(Q)^{2 s} \operatorname{diam} Q \frac{\chi_{Q}(x)}{\mu(Q)}<\infty \text { at } \mu \text {-a.e. } x \text {, }
$$

where $\beta_{\mu}^{*}(Q)$ is a stratified anisotropic beta number associated to $\mu\llcorner 1600 Q$.

Characterization of Rectifiable Curve Fragments in
 Arbitrary Metric Spaces

In a metric space \mathbb{X}, define

$$
\begin{aligned}
& Z\left(x_{1}, \ldots, x_{n}\right)=\max \left\{\sum_{j=1}^{k-1}\left|x_{i_{j}}-x_{i_{j+1}}\right|: 1=i_{1}<\cdots<i_{k}=n\right\}, \\
& \delta(F)=\sup \left\{\min _{\pi \in S_{n}} Z\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right): x_{1}, \ldots, x_{n} \in F, n \geq 1\right\}
\end{aligned}
$$

Theorem (Balka-Keleti arXiv-2023)

Let \mathbb{X} be a metric space and let $F \subset \mathbb{X}$ be compact. There exists a compact set $E \subset[0,1]$ such that $F=f(E)$ for some Lipschitz map $f: E \subset[0,1] \rightarrow \mathbb{X}$ if and only if $\delta(F)<\infty$.

My Interpretation: Modify definition of total variation, realizing that we don't know a priori the correct order to visit all of the points in F.

Quick Review of Minkowski and Packing Dimensions

Let \mathbb{X} be a metric space. The (upper) Minkowski dimension or (upper) box counting dimension of a bounded set $F \subset \mathbb{X}$ is

Unfortunately it is possible that $\operatorname{dim}_{M}\left(\bigcup_{1}^{\infty} F_{i}\right) \neq \sup _{1}^{\infty} \operatorname{dim}_{M} F_{i}$, i.e. Minkowski dimension is not countably stable.

Example: $\operatorname{In} \mathbb{X}=\mathbb{R}, \operatorname{dim}_{M}\{1 / n: n \geq 1\}=1 / 2$, but $\sup _{n \geq 1} \operatorname{dim}_{M}\{1 / n\}=0$.

The (upper) packing dimension of a set $F \subset \mathbb{X}$ is

$$
\inf \left\{\sup \operatorname{dim}_{M} F_{i}: F=\bigcup_{1}^{\infty} F_{i}, F_{i} \text { bounded }\right\}
$$

This is equivalent to another well-known definition with packing measures, but I don't need those today. In general $\operatorname{dim}_{H} F \leq \operatorname{dim}_{P} F \leq \operatorname{dim}_{M} F$.

A "Universal" Sufficient Condition for

Higher-Dimensional Lipschitz Fragments

Theorem (Balka-Keleti arXiv-2023)

Suppose \mathbb{M} is compact and has Hausdorff dimension t. If $F \subset \mathbb{X}$ is compact and the Minkowski dimension of F is $<t$, then $F=f(E)$ for some Lipschitz $\operatorname{map} f: E \subset \mathbb{M} \rightarrow \mathbb{X}$.

Proof Ingredients Combine Balka and Keleti's new characterization of rectifiable curve fragments with two theorems from metric geometry:

- Mendel and Naor's ultrametric skeleton theorem (2013) and
- Keleti-Máthé-Zindulka's theorem (2014) on existence of Lipschitz surjections from ultrametric spaces onto $[0,1]^{m}$.

Corollary

If $F \subset \mathbb{X}$ has packing dimension $<m$, then F is an m-rectifiable set in the sense that $F \subset \bigcup_{1}^{\infty} f_{i}\left(E_{i}\right)$ for some Lipschitz maps $f_{i}: E_{i} \subset[0,1]^{m} \rightarrow \mathbb{X}$.

Open Problem: Lipschitz Images of Squares into \mathbb{R}^{3}

Let $\mathbb{M}=[0,1]^{2}$ be a Euclidean square.

Let $\mathbb{X}=\mathbb{R}^{3}$ be a 3-dimensional Euclidean space.

Lipschitz image problem For which sets $F \subset \mathbb{R}^{3}$, does there exist a Lipschitz map $f:[0,1]^{2} \rightarrow \mathbb{R}^{3}$ such that $F=f\left([0,1]^{2}\right)$?

Lipschitz fragment problem For which sets $F \subset \mathbb{R}^{3}$, does there exist a Lipschitz map $f:[0,1]^{2} \rightarrow \mathbb{R}^{3}$ such that $F \subset f\left([0,1]^{2}\right)$. Equivalent to original formulation by McShane's extension theorem.

Rectifiable set problem Because of translation invariance of \mathbb{R}^{3}, this is likely equivalent to the Lipschitz fragment problem.

Rectifiable measure problem For which Radon measures μ on \mathbb{R}^{3}, are there Lipschitz maps $f_{i}:[0,1]^{2} \rightarrow \mathbb{R}^{3}$ s.t. $\mu\left(\mathbb{R}^{3} \backslash \bigcup_{1}^{\infty} f_{i}\left([0,1]^{2}\right)\right)=0$?

Partial Results for m-Rectifiable Measures

A Radon measure μ on \mathbb{X} is m-rectifiable in the sense of Federer if there exist Lipschitz $f_{i}: E_{i} \subset[0,1]^{m} \rightarrow \mathbb{X}$ such that $\mu\left(\mathbb{X} \backslash \bigcup_{1}^{\infty} f_{i}\left(E_{i}\right)\right)=0$.

Theorem (Morse-Randolph-Moore-Preiss 1944-1987)

A Radon measure μ on \mathbb{R}^{d} is m-rectifiable if

$$
0<\lim _{r+0} \frac{\mu(B(x, r))}{r^{m}}<\infty \quad \text { at } \mu \text {-a.e. } x \in \mathbb{R}^{d} \text {. }
$$

Theorem (Corollary of Balka-Keleti arXiv-2023)
A Radon measure μ on a metric space \mathbb{X} is m-rectifiable if

$$
\underset{r \nmid 0}{\lim \sup } \frac{\log \mu(B(x, r))}{\log r}<m \quad \text { at } \mu \text {-a.e. } x \in \mathbb{X} \text {. }
$$

Consequence: To characterize 2-rectifiable measures in \mathbb{R}^{3}, it remains to understand the rectifiability of sets in \mathbb{R}^{3} that simultaneously have
(i) zero Hausdorff measure \mathcal{H}^{2} and (ii) packing dimension 2.

A 2-dimensional null set in \mathbb{R}^{3} that is not a distorted

copy of a null set in \mathbb{R}^{2}

Start with $F_{0}=[0,1]^{3}$. Assume F_{n} has been defined and consists of 9^{n} cubes with mutually disjoint interiors and side length s_{n}. Define F_{n+1} by replacing each cube Q in F_{n} with 9 cubes of side length $s_{n+1}=\frac{1}{n+1} 3^{-(n+1)}$, eight in the corners and one in the center. Then $F=\bigcap_{n=0}^{\infty} F_{n}$ is Cantor set.

It is easy to see that $\mathcal{H}^{2}(F)=0$ and $\operatorname{dim}_{H} F=\operatorname{dim}_{P} F=\operatorname{dim}_{M} F=2$.
Theorem: F is not contained in a Lipschitz image of $[0,1]^{2}$.
Different (unpublished) proofs communicated to me and Raanan Schul by David-Toro (2016) and Alberti-Csörnyei (2019)

A 2-dimensional null set in \mathbb{R}^{3} that is a distorted copy of a null set in \mathbb{R}^{2}

Let $\alpha>1$. Modify the side lengths so that $s_{n+1}=\frac{1}{(n+1)^{\alpha}} 3^{-(n+1)}$.

Once again $\mathcal{H}^{2}(F)=0$ and $\operatorname{dim}_{H} F=\operatorname{dim}_{P} F=\operatorname{dim}_{M} F=2$.

Theorem: There exists a compact set $E \subset[0,1]^{2}$ and a Lipschitz map
$f: E \rightarrow \mathbb{R}^{3}$ such that $F=f(E)$.
An (unpublished) construction of this type was found by Badger-Vellis (2019). More systematic proof is given in Badger-Schul (2023-arXiv).

Part I Background and Related Results

Part II "Square Packing Construction" of Lipschitz Maps

Part III Rectifiable Doubling Measures in Ahlfors Regular Spaces

Combinatorial Problem: Square Packing

Problem: Suppose you are given a list of side lengths

$$
s_{0}>s_{1}>s_{2}>\cdots>s_{n-1}
$$

What is the side length side $\left(s_{0}, \ldots, s_{n-1}\right)$ of the smallest square containing squares of side length s_{0}, \ldots, s_{n-1} with disjoint interiors?
Theorem (Moon-Moser 1967)
side $\left(s_{0}, \ldots, s_{n-1}\right)^{2} \leq 2 \sum_{i=0}^{n-1} s_{i}^{2}$.
Remark 1: Taking $s_{0}=s_{1}=1$ and $s_{2}=s_{3} \ll 1$ shows that the multiplicative factor 2 in the lemma is sharp.

Remark 2: The multiplicative factor 2 in the lemma is deadly for iterative constructions. This gives a heuristic explanation of why the diam ${ }^{2}$ gauge ("diameter squared") has not lead to a 2d traveling salesman theorem.

Remark 3: When packing intervals (1d squares), the corresponding statement is much nicer: $\operatorname{side}\left(s_{0}, \ldots, s_{n-1}\right)=s_{0}+\cdots+s_{n-1}$.

Diameter-Based Square Packing Bound

Lemma (Badger-Schul arXiv-2023)
side $\left(s_{0}, \ldots, s_{n-1}\right) \leq s_{0}+s_{1}+s_{4}+s_{9}+\ldots$ (add squared indices only)

Proof. When $n=4$, the smallest square containing squares of side length s_{0}, s_{1}, s_{2}, and s_{3} has side length $s_{0}+s_{1}$.

Corollary (Restatement of an Obvious Fact): A list of N squares of side length s can be packed inside of a square of side length $\left\lceil N^{1 / 2}\right\rceil s$

Idea: Represent a tree of nested sets in \mathbb{X} as a combinatorially equivalent tree of nested squares in \mathbb{R}^{2}

Tree of Nested Squares Abstract Tree

Pick a level $I \geq 1$. Given marked points $\left\{x_{Q}: Q \in \mathcal{T}_{1}\right\}$, need to decide how to place a points $x_{Q}^{\prime}=f^{-1}\left(x_{Q}\right)$ in the domain such that

$$
\left|x_{Q}-x_{R}\right|=\left|f\left(x_{Q}^{\prime}\right)-f\left(x_{R}^{\prime}\right)\right| \leq\left|x_{Q}^{\prime}-x_{R}^{\prime}\right| \quad \text { or } \quad\left|x_{Q}^{\prime}-x_{R}^{\prime}\right| \geq\left|x_{Q}-x_{R}\right| .
$$

Recursive construction (outline)

1. Suppose we can do the construction for trees of depth $I-1$.
2. Let \mathcal{T} be a tree of depth $I \geq 1$ and let $\left\{x_{Q}: Q \in \mathcal{T}_{l}\right\}$ be given.
3. View the tree \mathcal{T} as a disjoint union of $N_{0}=\# \operatorname{Child}(\operatorname{Top}(\mathcal{T}))=\# \mathcal{T}_{1}$ trees of depth $I-1$ (one such tree for each set in \mathcal{T}_{1}). For each $P \in \mathcal{T}_{1}$, we let $F_{P}=\left\{x_{Q}: Q \in \mathcal{T}_{l}\right.$ and Q is a descendant of $\left.P\right\}$.
4. For each $P \in \mathcal{T}_{1}$, we can find a square $S_{P} \subset \mathbb{R}^{2}$, "domain points" $E_{P} \subset S_{P}$, and an 1-Lipschitz bijective map $f_{P}: E_{P} \rightarrow F_{P}$.
5. Key step: Let $D_{0}=\operatorname{diam} \operatorname{Top}(\mathcal{T})$ and let $s_{I-1}=\max \left\{\right.$ side $\left.S_{P}: P \in \mathcal{T}_{1}\right\}$. Use the Lemma to pack $\left(\left\lceil N_{0}^{1 / 2}\right\rceil-1\right)^{2}$ cubes of side length $s_{I-1}+D_{0}$ and $\left\lceil N_{0}^{1 / 2}\right\rceil^{2}-\left(\left(\left\lceil N_{0}^{1 / 2}\right\rceil-1\right)^{2}\right.$ cubes of side length s_{l-1} into a cube of side

$$
s_{l}=\left(\left\lceil N_{0}^{1 / 2}\right\rceil-1\right)\left(D_{0}+s_{l-1}\right)+s_{l-1}=\left\lceil N_{0}^{1 / 2}\right\rceil s_{l-1}+\left(\left\lceil N_{0}^{1 / 2}\right\rceil-1\right) D_{0}
$$

6. Solve the recursion formula.

Example of the domain of a map with level / = 2

There are 16 cubes in \mathcal{T}_{1} and each cube in \mathcal{T}_{1} has 25 children.
"Yellow blocks" are translations of squares produced by the recursive step.
The side length of a "yellow block" is $\left(\left\lceil N_{1}^{1 / 2}\right\rceil-1\right) D_{1}=4 D_{1}$.
To get a 1-Lipschitz map, we must surround each "yellow block" (except the rightmost ones in each direction) by a "blue" gap of side length D_{0}.

The total side length of the big square is

$$
\left(\left\lceil N_{0}^{1 / 2}\right\rceil-1\right) D_{0}+\left\lceil N_{0}^{1 / 2}\right\rceil\left(\left\lceil N_{1}^{1 / 2}\right\rceil-1\right) D_{1}=3 D_{0}+4 \cdot 4 D_{1}=3 D_{0}+16 D_{1}
$$

Square Packing Construction

Theorem (Badger-Schul arXiv-2023)

Let $\mathcal{T}=\bigsqcup_{j=0}^{\infty} \mathcal{T}_{j}$ be a tree of sets in a metric space \mathbb{X}, requiring only that every set in the tree is contained in its parent. For each $j \geq 0$, assign

$$
N_{j}=\max _{Q \in \mathcal{T}_{j}} \# \operatorname{Child}(Q) \quad \text { and } \quad D_{j}=\max _{Q \in \mathcal{T}_{j}} \operatorname{diam} Q
$$

Let $I \geq 1$ be an integer and suppose that $\mathcal{T}_{1} \neq \emptyset$. Compute

$$
s=\sum_{j=0}^{l-1}\left(\prod_{i=0}^{j-1}\left\lceil N_{i}^{1 / 2}\right\rceil\right)\left(\left\lceil N_{j}^{1 / 2}\right\rceil-1\right) D_{j} .
$$

(When $j=0, \prod_{i=0}^{j-1}\left\lceil N_{i}^{1 / 2}\right\rceil=1$.) For any set or multiset $F=\left\{x_{Q} \in Q: Q \in \mathcal{T}_{l}\right\}$, there is a set $E \subset \ell_{\infty}^{2} \cap[0, s]^{2}$ with $\# E=\# F$ and we can construct a 1-Lipschitz bijection $f: E \rightarrow F$.

Remark (Hölder maps): If you replace the quantity D_{j} in s by D_{j}^{α}, then the construction produces Hölder bijection $f: E \rightarrow F$ of exponent $1 / \alpha$.

Square Packing Construction + Arzela-Ascoli

Corollary (Badger-Schul arXiv-2023)

Let \mathcal{T} be a tree of nested sets in a metric space \mathbb{X}, requiring only that every set in the tree is contained in its parent. Assume each level of the tree is nonempty. As before, for each $j \geq 0$, assign

$$
N_{j}=\max _{Q \in \mathcal{T}_{j}} \# \operatorname{Child}(Q) \quad \text { and } \quad D_{j}=\max _{Q \in \mathcal{T}_{j}} \operatorname{diam} Q
$$

Suppose that

$$
L=\sum_{j=0}^{\infty}\left(\prod_{i=0}^{j}\left\lceil N_{i}^{1 / 2}\right\rceil\right) D_{j}<\infty .
$$

Then there exists a compact set $E \subset[0,1]^{2}$ and an L-Lipschitz map $f:[0,1]^{2} \cap \ell_{\infty}^{2} \rightarrow \mathbb{X}$ such that Leaves $(\mathcal{T}) \subset f(E)$.

Remark (Higher-Dimensional Domains): The same construction lets you build Lipschitz maps from subsets of $[0,1]^{m}$ when $m \geq 3$.
Simply replace the quantity $\left\lceil N_{j}^{1 / 2}\right\rceil$ with $\left\lceil N_{j}^{1 / m}\right\rceil$.

Example of Using the Square Packing Construction

Let $\alpha>1$. Recall that we built a Cantor set F in \mathbb{R}^{3} by starting with $[0,1]^{3}$ and then replacing each cube in level n with 9 children of side length
$s_{n+1}=\frac{1}{(n+1)^{\alpha}} 3^{-(n+1)}$.
Cubes in level n have $N_{n}=9$ children and diameter $D_{n}=\frac{\sqrt{3}}{n^{\alpha}} 3^{-n}$

$$
L=\sum_{n=0}^{\infty}\left(\prod_{k=0}^{n}\left\lceil N_{k}^{1 / 2}\right\rceil\right) D_{n}=\sum_{n=0}^{\infty} 3^{n+1} D_{n}=3 \sqrt{3}+3 \sqrt{3} \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}<\infty
$$

Therefore, there exists a compact set $E \subset[0,1]^{2}$ an L-Lipschitz map
$f: E \rightarrow \mathbb{R}^{3}$ such that $f(E)=F$.

Easy Application of Square Packing Construction

The Assouad dimension of a set in a metric space (I'll skip the definition) is at least as large as the Minkowski dimension: $\operatorname{dim}_{M} F \leq \operatorname{dim}_{A} F$.

For any $b>1$ the definition of $\operatorname{dim}_{A} F$ naturally yields a tree of sets with Leaves $(\mathcal{T})=F$ and $N_{j}=\max \left\{\# \operatorname{Child}(Q): Q \in \mathcal{T}_{j}\right\} \lesssim b^{\operatorname{dim}_{A} F}$ and $D_{j}=\max \left\{\operatorname{diam} Q: Q \in \mathcal{T}_{j}\right\} \leq b^{-j}$. Taking b to be sufficiently large and applying the Square Packing Construction to \mathcal{T} gives

Theorem (Badger-Schul arXiv-2023)

If \mathbb{X} is a complete metric space. If $F \subset \mathbb{X}$ is compact, $m \geq 1$ is an integer, and $\operatorname{dim}_{A} F<m$, then \exists Lipschitz map $f: E \subset[0,1]^{m} \rightarrow \mathbb{X}$ such that $f(E) \supset F$. Remark 1: This theorem is now superseded by Balka-Keleti.

Remark 2: On the other hand, the proof of Assouad dimension theorem is much easier/shorter than the proof of the Minkowski dimension theorem.

Remark 3: Balka-Keleti is not specific to Euclidean domains and cannot be used to check m-rectifiability for sets of dimension m (like previous slide).

Part I Background and Related Results

Part II "Square Packing Construction" of Lipschitz Maps

Part III Rectifiable Doubling Measures in Ahlfors Regular Spaces

Context: Doubling Measures and Rectifiable Curves

For this talk a doubling measure μ on a metric space \mathbb{X} is a Radon measure such that for some constant C,

$$
0<\mu(B(x, 2 r)) \leq C \mu(B(x, r))<\infty \quad \text { for all } x \in \mathbb{X} \text { and } r>0
$$

Theorem (Volberg-Konyagin 1987, Luukkainen-Saskman 1998)

If \mathbb{X} is a complete, doubling metric space (i.e. every ball of radius $2 r$ can be covered by at most C^{\prime} balls of radius r), then there are doubling measures on \mathbb{X}.

Lemma

If μ is a doubling measure on $\mathbb{R}^{d}, d \geq 2$, and $F \subset \mathbb{R}^{d}$ is q-Ahlfors regular set for some $q<d$, then F is porous and $\mu(F)=0$. In particular, doubling measures on \mathbb{R}^{d} do not charge C^{1} and bi-Lipschitz curves (i.e. they are μ null sets).

Theorem (Garnett-Killip-Schul 2010)

For all $d \geq 2$, there exist doubling measures μ on \mathbb{R}^{d} that are 1-rectifiable. Hence $\mu(\Gamma)>0$ for some rectifiable curve Γ (with Assouad dimension d).

Rectifiable Doubling Measures with Prescribed Hausdorff and Packing Dimensions

Theorem (Badger-Schul arXiv-2023)

Let \mathbb{X} be a complete, Ahlfors q-regular metric space. Let m be an integer with $q>m-1$. Given any $0<s_{H}<s_{P}<q$ with $m-1<s_{P}<m$ and $s_{P}<q$, there exists a doubling measure μ on \mathbb{X} such that

1. μ has Hausdorff dimension $s_{H}: \lim \inf _{r \downarrow 0} \frac{\log \mu(B(x, r))}{\log r}=s_{H}$ at μ-a.e. x,
2. μ has packing dimension $s_{P}: \lim \sup _{r \downarrow 0} \frac{\log \mu(B(x, r))}{\log r}=s_{P}$ at μ-a.e. x,
3. μ is m-rectifiable (i.e. carried by Lipschitz images of $E \subset[0,1]^{m}$),
4. μ is purely $(m-1)$-unrectifiable (i.e. singular to Lipschitz images of $E \subset[0,1]^{m-1}$).

Conjecture (Badger-Schul arXiv-2023): The theorem also holds at the endpoint parameters, i.e. if $s_{P}=m-1, s_{P}=m$, or $s_{P}=q$.

Examples

1. There exist doubling measures μ on \mathbb{R}^{3} of Hausdorff dimension $s_{H}=0.0001$ and packing dimension $s_{P}=1.9999$ that are 2-rectifiable and purely 1 -unrectifiable.
2. Any compact self-similar set of Hausdorff dimension q in \mathbb{R}^{d} that satisfies the open set condition is Ahlfors q-regular and supports a $\lceil q\rceil$-rectifiable doubling measure that is purely ($\lceil q\rceil-1$)-unrectifiable. These examples include Cantor sets, which are totally disconnected.
3. The Koch snowflake curve in \mathbb{R}^{2} contains no non-trivial rectifiable subcurves, but is Ahlfors $\log _{3}(4)$-regular. Thus, the snowflake curve supports 1 -rectifiable doubling measures of Hausdorff and packing dimension $1-\epsilon$ for any $\epsilon>0$.
4. When $s>m$ and $I=[0,1]^{m}$ is equipped with the snowflake metric $d(x, y)=|x-y|^{m / s}$, the space $/$ is Ahlfors s-regular and $\mathcal{H}^{s} L I$ is purely m-unrectifiable (because $s>m$). Nevertheless, the space $/$ supports an m-rectifiable doubling measure that is purely ($m-1$)-unrectifiable.

"Euclidean-Like" Measures on the Heisenberg Group

The first Heisenberg group \mathbb{H}^{1} is a nonabelian step 2 Carnot group that is topologically equivalent to \mathbb{R}^{3}, but equipped with a metric so that \mathbb{H}^{1} has Hausdorff dimension 4 and is Ahlfors 4-regular.

By theorem of Ambrosio and Kirchheim, the Hausdorff measures $\mathcal{H}^{m}\left\llcorner\mathbb{H}^{1}\right.$ are purely m-unrectifiable for all $m \in\{2,3,4\}$. Even so, for all $m \in\{2,3,4\}$ and $s<m$, there exist doubling measures μ on \mathbb{H}^{1} and Lipschitz maps $f: E \subset \mathbb{R}^{m} \rightarrow \mathbb{H}^{1}$ such that $\mu \ll \mathcal{H}^{s-\epsilon}$ for all $\epsilon>0, \operatorname{dim}_{H} f(E)=s$, and $\mu(f(E))>0$. That is, doubling measures on \mathbb{H}^{1} can charge Lipschitz images of Euclidean spaces of almost maximal dimension.

Remarks

- $s_{P}>m-1$ implies that μ is purely $(m-1)$-unrectifiable is (or should be!) well-known
- Any doubling measure on vanishes on porous sets, including images of lower-dimensional bi-Lipschitz embeddings into \mathbb{R}^{d}. So a bi-Lipschitz technique like David and Toro's variant of the Reifenberg algorithm is useless for proving rectifiability of a doubling measure.
- To prove that μ is m-rectifiable, we use $s_{P}<m$ and the square packing construction, but this also follows from Balka-Keleti. Finer analysis with square packing construction should yield the case $s_{P}=m$.
- In these examples, Hausdorff dimension is essentially irrelevant to rectifiability. It is packing dimension that matters.
- So the essential point is to build a doubling measure μ satisfying $m-1<\operatorname{dim}_{P} \mu<m$. For $\mathbb{X}=\mathbb{R}^{d}$, we can use a Bernoulli product. For general Ahlfors regular \mathbb{X}, we could not locate such measures in the literature and build quasi-Bernoulli measures using the metric cubes of Käenmäki-Rajala-Suomala

Quasi-Bernoulli Measures with Prescribed Dimensions

Let \mathbb{X} be complete, q-Ahlfors regular. We start with any doubling measure ν, pick a sequence $\mathbf{s}=\left(s_{k}\right)_{k=1}^{\infty}$ of "target dimensions", let Δ be a system of (KRS) b-adic cubes on \mathbb{X} with $b \geq 47$ sufficiently large depending on \mathbb{X} and s, and then redistribute the mass below scale 1 to produce a doubling measure μ with prescribed dimensions: $\operatorname{dim}_{H} \mu=\lim \inf _{n \rightarrow \infty} \frac{1}{n}\left(s_{1}+\cdots+s_{n}\right)$ and $\operatorname{dim}_{P} \mu=\lim \sup _{n \rightarrow \infty} \frac{1}{n}\left(s_{1}+\cdots+s_{n}\right)$
Without exact counts of cubes, we need to do some actual work to arrange that the entropy of each level of the system takes prescribed values.
To get a doubling measure and prescribed entropy we need three weights per cube. It is crucial that the "outer weights" α do not depend on the cube Q.

The Key Computation: How to Pick the Weights

Lemma (Badger-Schul arXiv-2023)

If $b>1$ and L and M are positive integers such that $L \leq b^{y}$ and $M \geq b^{s}$ for some $s, y>0$, then there exists a number $\alpha_{0}=\alpha_{0}(b, y, s)$ such that for all $0 \leq \alpha \leq \alpha_{0}$, there exist unique numbers $\beta=\beta(\alpha, b, y, s, L, M)$ and $\gamma=\gamma(\alpha, b, y, s, L, M)$ such that

$$
\begin{equation*}
L \alpha+(M-1) \beta+\gamma=1 \tag{1}
\end{equation*}
$$

and the entropy function

$$
\begin{equation*}
h_{b, L, M}(\alpha, \beta):=L \alpha \log _{b}(1 / \alpha)+(M-1) \beta \log _{b}(1 / \beta)+\gamma \log _{b}(1 / \gamma)=s \tag{2}
\end{equation*}
$$

We may always bound $L \alpha \log _{b}(1 / \alpha) \leq \min (1, s) / e, L \alpha \leq \min \left(1, s^{2}\right) / e^{2}$,

$$
\begin{align*}
& \gamma \geq 1-L \alpha-\frac{s-L \alpha \log _{b}(1 / \alpha)}{\log _{b}(M-1)} \geq 1-\frac{\min \left(1, s^{2}\right)}{e^{2}}-\left(1-\frac{1}{e}\right) \frac{s}{\log _{b}(M-1)}, \tag{3}\\
& \quad \text { and } \quad \gamma \geq \frac{1-L \alpha}{M} \geq \frac{1}{M}\left(1-\frac{\min \left(1, s^{2}\right)}{e^{2}}\right) \geq \frac{1}{M}\left(1-\frac{1}{e^{2}}\right) . \tag{4}
\end{align*}
$$

Moreover, if $2 e^{2} \log _{b}\left(e^{2}\right) \leq\left(\frac{1}{2}-\frac{1}{e}\right) s$, then

$$
\begin{equation*}
\beta \geq \frac{s}{2(M-1) \log _{b}(M-1)} \tag{5}
\end{equation*}
$$

Actual Definition of the Quasi-Bernoulli Measures

Definition (Badger-Schul arXiv-2023)

Let \mathbb{X} be a complete Ahlfors q-regular metric space with $\operatorname{diam} \mathbb{X} \geq 2.1$, let ν be a doubling measure on \mathbb{X}, and let $\mathbf{s}=\left(s_{k}\right)_{k=1}^{\infty}$ be a sequence of positive numbers ("target dimensions") such that

$$
\begin{equation*}
s_{*}:=\inf _{k \geq 1} s_{k}>0 \text { and } s^{*}:=\sup _{k \geq 1} s_{k}<q . \tag{6}
\end{equation*}
$$

Let $\left(\Delta_{k}\right)_{k \in \mathbb{Z}}$ be a system of b-adic cubes for \mathbb{X} for some large $b \geq 47$. For all $Q \in \Delta$, assign $L_{Q}:=\# \operatorname{Outer}(Q), M_{Q}:=\# \operatorname{lnner}(Q)$, and $N_{Q}:=\# \operatorname{Child}(Q)$. We require that b be large enough depending on at most \mathbb{X} and s^{*} so that

$$
\begin{equation*}
M_{Q} \geq b^{s^{*}} \quad \text { and } \quad L_{Q} \leq N_{Q} \leq b^{q+1} \quad \text { for all } Q \in \Delta_{+}=\bigcup_{k=0}^{\infty} \Delta_{k} \tag{7}
\end{equation*}
$$

Let $0<\alpha \leq\left(\frac{1}{2} \min \left\{s_{*}, 1\right\} \ln (b) b^{-(q+1)}\right)^{2}$ be a given weight. For all $k \geq 0$ and $Q \in \Delta_{k}$, use the Lemma to define unique weights

$$
\beta_{Q}=\beta\left(\alpha, b, q+1, s_{k+1}, L_{Q}, M_{Q}\right) \quad \text { and } \quad \gamma_{Q}=\gamma\left(\alpha, b, q+1, s_{k+1}, L_{Q}, M_{Q}\right)
$$

satisfying

$$
\begin{equation*}
1=L_{Q^{\alpha}}+\left(M_{Q}-1\right) \beta_{Q}+\gamma_{Q} \quad \text { and } \quad h_{b, L_{Q}}, M_{Q}\left(\alpha, \beta_{Q}\right)=s_{k+1} . \tag{8}
\end{equation*}
$$

We specify a Radon measure $\mu_{\mathbf{S}}$ on \mathbb{X} by specifying its values on cubes as follows:

1. Declare $\mu_{\mathbf{s}}(Q):=\nu(Q)$ for all $Q \in \Delta_{0}$.
2. For all $k \geq 0$ and $Q \in \Delta_{k}$, declare $\mu_{\mathbf{s}}(R):=\alpha \mu_{\mathbf{s}}(Q)$ for all $R \in \operatorname{Outer}(Q)$, declare $\mu_{\mathbf{s}}(R):=\beta_{Q} \mu_{\mathbf{s}}(Q)$ for all $R \in \operatorname{Inner}(Q) \backslash\left\{Q^{\downarrow}\right\}$, and declare $\mu_{\mathbf{S}}\left(Q^{\downarrow}\right):=\gamma_{Q^{\prime}} \mu_{\mathbf{S}}(Q)$.
We call $\mu_{\mathbf{s}}$ a quasi-Bernoulli measure on \mathbb{X} with target dimensions \mathbf{s}, background measure ν, and outer weight α.

Thagkyoureryousattention!

View from the UConn Math Department

