Square Packings and Rectifiable Doubling Measures

Matthew Badger

University of Connecticut Department of Mathematics

Joint work with Raanan Schul (Stony Brook University)

Séminare Analysis Harmonique Université Paris-Saclay (Orsay) December 2023

Research Partially Supported by NSF DMS 2154047

Part I Background and Related Results (not comprehensive)

Part II "Square Packing Construction" of Lipschitz Maps

Part III Rectifiable Doubling Measures in Ahlfors Regular Spaces

Lipschitz Images and Rectifiability

Let \mathbb{M} and \mathbb{X} be metric spaces.

Think of \mathbb{M} as the **model space** and \mathbb{X} as the **target space**.

Lipschitz image problem For which sets $F \subset X$, does there exist a Lipschitz map $f : \mathbb{M} \to X$ such that $F = f(\mathbb{M})$?

Lipschitz fragment problem For which sets $F \subset X$, does there exist a set $E \subset M$ and a Lipschitz map $f : E \to X$ such that F = f(E)?

Rectifiable set problem For which sets $F \subset X$, does there exist a sequence of Lipschitz maps $f_i : E_i \subset \mathbb{M} \to X$ such that $F = \bigcup_{i=1}^{\infty} f_i(E_i)$?

Rectifiable measure problem For which Radon measures μ on \mathbb{X} , is there a sequence of Lipschitz maps such that $\mu(\mathbb{X} \setminus \bigcup_{1}^{\infty} f_{i}(E_{i})) = 0$?

Rectifiable Curves and Analyst's Traveling Salesman

 $\mathbb{M} = [0, 1]$: a Lipschitz image f([0, 1]) is called a **rectifiable curve**.

Theorem (Ważewski 1927)

In any metric space X, a set $F \subset X$ is a rectifiable curve if and only if F is compact, F is connected, and Hausdorff measure $\mathcal{H}^1(F) < \infty$.

Theorem (Jones-Okikiolu-Schul-Badger-McCurdy 1990-2023)

In any finite-dimensional Banach space or in any Hilbert space X, a set $F \subset X$ is contained in a rectifiable curve if and only if

diam
$$F < \infty$$
 and $\sum_{Q} \beta_F^2(Q)$ diam $Q < \infty$,

where Q ranges over an appropriate family of "dyadic locations and scales" and $\beta_F(Q)$ measures how close $F \cap 3Q$ is to a line relative to diam Q.

Theorem (Li 2022, earlier work by Ferrari-Franchi-Pajot, ...) \exists characterization of subsets of rectifiable curves in Carnot groups of step ≥ 2

Characterization of 1-Rectifiable Measures in Euclidean Spaces and Carnot Groups

A Radon measure μ on \mathbb{X} is **1-rectifiable** in the sense of Federer if there exist Lipschitz $f_i : E_i \subset [0, 1] \to \mathbb{X}$ such that $\mu(\mathbb{X} \setminus \bigcup_{i=1}^{\infty} f_i(E_i)) = 0$.

Theorem (Badger-Schul 2017)

Let $\mathbb{X} = \mathbb{R}^d$ for some $d \ge 2$. A Radon measure μ is 1-rectifiable iff

$$\liminf_{r\downarrow 0} \frac{\mu(B(x,r))}{r} > 0 \quad \text{and} \quad \sum_{Q} \beta^*_{\mu}(Q)^2 \operatorname{diam} Q \frac{\chi_Q(x)}{\mu(Q)} < \infty \text{ at } \mu\text{-a.e. } x,$$

where $\beta_{\mu}^{*}(Q)$ is an **anisotropic beta number** associated to $\mu \sqsubseteq 1600Q$.

Theorem (Badger-Li-Zimmerman 2023)

Let $X = \mathbb{G} = Carnot$ group of step $s \ge 2$. A Radon measure μ is 1-rectifiable iff

$$\liminf_{r\downarrow 0} \frac{\mu(B(x,r))}{r} > 0 \quad \text{and} \quad \sum_Q \beta^*_\mu(Q)^{2s} \operatorname{diam} Q \frac{\chi_Q(x)}{\mu(Q)} < \infty \text{ at } \mu\text{-a.e. } x,$$

where $\beta_{\mu}^{*}(Q)$ is a stratified anisotropic beta number associated to $\mu \sqsubseteq 1600Q$.

Characterization of Rectifiable Curve Fragments in Arbitrary Metric Spaces

In a metric space $\mathbb X$, define

$$Z(x_1, \ldots, x_n) = \max \left\{ \sum_{j=1}^{k-1} |x_{i_j} - x_{i_{j+1}}| : 1 = i_1 < \cdots < i_k = n \right\},$$

$$\delta(F) = \sup\left\{\min_{\pi\in S_n} Z(x_{\pi(1)}, \ldots, x_{\pi(n)}) : x_1, \ldots, x_n \in F, n \ge 1\right\}$$

Theorem (Balka-Keleti arXiv-2023)

Let X be a metric space and let $F \subset X$ be compact. There exists a compact set $E \subset [0, 1]$ such that F = f(E) for some Lipschitz map $f : E \subset [0, 1] \to X$ if and only if $\delta(F) < \infty$.

My Interpretation: Modify definition of total variation, realizing that we don't know *a priori* the correct order to visit all of the points in *F*.

イロト イポト イヨト イヨト ヨー のくぐ

Quick Review of Minkowski and Packing Dimensions

Let X be a metric space. The **(upper) Minkowski dimension** or **(upper) box counting dimension** of a bounded set $F \subset X$ is

 $\limsup_{r \downarrow 0} \frac{\log(\text{minimum number of balls of radius } r \text{ needed to cover } F)}{\log r}$

Unfortunately it is possible that $\dim_M(\bigcup_1^{\infty} F_i) \neq \sup_1^{\infty} \dim_M F_i$, i.e. Minkowski dimension is not countably stable.

Example: In $\mathbb{X} = \mathbb{R}$, dim_M{ $1/n : n \ge 1$ } = 1/2, but sup_{n>1} dim_M{1/n} = 0.

The **(upper) packing dimension** of a set $F \subset X$ is

$$\inf\{\sup \dim_M F_i: F = \bigcup_{1}^{\infty} F_i, F_i \text{ bounded}\}.$$

This is equivalent to another well-known definition with packing measures, but I don't need those today. In general $\dim_H F \leq \dim_P F \leq \dim_M F$.

A "Universal" Sufficient Condition for Higher-Dimensional Lipschitz Fragments

Theorem (Balka-Keleti arXiv-2023)

Suppose \mathbb{M} is compact and has Hausdorff dimension t. If $F \subset \mathbb{X}$ is compact and the Minkowski dimension of F is < t, then F = f(E) for some Lipschitz map $f : E \subset \mathbb{M} \to \mathbb{X}$.

Proof Ingredients Combine Balka and Keleti's new characterization of rectifiable curve fragments with two theorems from metric geometry:

- Mendel and Naor's ultrametric skeleton theorem (2013) and
- Keleti-Máthé-Zindulka's theorem (2014) on existence of Lipschitz surjections from ultrametric spaces onto [0, 1]^m.

Corollary

If $F \subset \mathbb{X}$ has packing dimension < m, then F is an *m*-rectifiable set in the sense that $F \subset \bigcup_{i=1}^{\infty} f_i(E_i)$ for some Lipschitz maps $f_i : E_i \subset [0, 1]^m \to \mathbb{X}$.

Open Problem: Lipschitz Images of Squares into \mathbb{R}^3

Let $\mathbb{M} = [0, 1]^2$ be a Euclidean square.

Let $\mathbb{X}=\mathbb{R}^3$ be a 3-dimensional Euclidean space.

Lipschitz image problem For which sets $F \subset \mathbb{R}^3$, does there exist a Lipschitz map $f : [0, 1]^2 \to \mathbb{R}^3$ such that $F = f([0, 1]^2)$?

Lipschitz fragment problem For which sets $F \subset \mathbb{R}^3$, does there exist a Lipschitz map $f : [0, 1]^2 \to \mathbb{R}^3$ such that $F \subset f([0, 1]^2)$. Equivalent to original formulation by McShane's extension theorem.

Rectifiable set problem Because of translation invariance of \mathbb{R}^3 , this is likely equivalent to the Lipschitz fragment problem.

Rectifiable measure problem For which Radon measures μ on \mathbb{R}^3 , are there Lipschitz maps $f_i : [0, 1]^2 \to \mathbb{R}^3$ s.t. $\mu(\mathbb{R}^3 \setminus \bigcup_1^\infty f_i([0, 1]^2)) = 0$?

Partial Results for *m*-Rectifiable Measures

A Radon measure μ on \mathbb{X} is *m*-rectifiable in the sense of Federer if there exist Lipschitz $f_i : E_i \subset [0, 1]^m \to \mathbb{X}$ such that $\mu(\mathbb{X} \setminus \bigcup_{i=1}^{\infty} f_i(E_i)) = 0$.

Theorem (Morse-Randolph-Moore-Preiss 1944–1987) A Radon measure μ on \mathbb{R}^d is *m*-rectifiable if

$$0 < \lim_{r \downarrow 0} \frac{\mu(B(x, r))}{r^m} < \infty \quad \text{ at } \mu\text{-a.e. } x \in \mathbb{R}^d.$$

Theorem (Corollary of Balka-Keleti arXiv-2023)

A Radon measure μ on a metric space X is *m*-rectifiable if

$$\limsup_{r \downarrow 0} \frac{\log \mu(B(x, r))}{\log r} < m \quad \text{at } \mu\text{-a.e. } x \in \mathbb{X}$$

Consequence: To characterize 2-rectifiable measures in \mathbb{R}^3 , it remains to understand the rectifiability of sets in \mathbb{R}^3 that simultaneously have (i) zero Hausdorff measure \mathcal{H}^2 and (ii) packing dimension 2.

A 2-dimensional null set in \mathbb{R}^3 that is not a distorted copy of a null set in \mathbb{R}^2

Start with $F_0 = [0, 1]^3$. Assume F_n has been defined and consists of 9^n cubes with mutually disjoint interiors and side length s_n . Define F_{n+1} by replacing each cube Q in F_n with 9 cubes of side length $s_{n+1} = \frac{1}{n+1}3^{-(n+1)}$, eight in the corners and one in the center. Then $F = \bigcap_{n=0}^{\infty} F_n$ is Cantor set.

It is easy to see that $\mathcal{H}^2(F) = 0$ and $\dim_H F = \dim_P F = \dim_M F = 2$.

Theorem: *F* is not contained in a Lipschitz image of $[0, 1]^2$.

Different (unpublished) proofs communicated to me and Raanan Schul by David-Toro (2016) and Alberti-Csörnyei (2019)

A 2-dimensional null set in \mathbb{R}^3 that is a distorted copy of a null set in \mathbb{R}^2

Let $\alpha > 1$. Modify the side lengths so that $s_{n+1} = \frac{1}{(n+1)^{\alpha}} 3^{-(n+1)}$.

Once again $\mathcal{H}^2(F) = 0$ and $\dim_H F = \dim_P F = \dim_M F = 2$.

Theorem: There exists a compact set $E \subset [0, 1]^2$ and a Lipschitz map $f : E \to \mathbb{R}^3$ such that F = f(E).

An (unpublished) construction of this type was found by Badger-Vellis (2019). More systematic proof is given in Badger-Schul (2023-arXiv).

Part I Background and Related Results

Part II "Square Packing Construction" of Lipschitz Maps

Part III Rectifiable Doubling Measures in Ahlfors Regular Spaces

・ロト・日本・日本・日本・日本・今日・

Combinatorial Problem: Square Packing

Problem: Suppose you are given a list of side lengths

 $s_0 > s_1 > s_2 > \cdots > s_{n-1}.$

What is the side length side (s_0, \ldots, s_{n-1}) of the smallest square containing squares of side length s_0, \ldots, s_{n-1} with disjoint interiors?

Theorem (Moon-Moser 1967)

 $side(s_0, \ldots, s_{n-1})^2 \le 2 \sum_{i=0}^{n-1} s_i^2.$

Remark 1: Taking $s_0 = s_1 = 1$ and $s_2 = s_3 \ll 1$ shows that the multiplicative factor 2 in the lemma is sharp.

Remark 2: The multiplicative factor 2 in the lemma is deadly for iterative constructions. This gives a heuristic explanation of why the diam² gauge ("diameter squared") has not lead to a 2d traveling salesman theorem.

Remark 3: When packing intervals (1d squares), the corresponding statement is much nicer: side(s_0, \ldots, s_{n-1}) = $s_0 + \cdots + s_{n-1}$.

Diameter-Based Square Packing Bound

Lemma (Badger-Schul arXiv-2023)

 $side(s_0, \ldots, s_{n-1}) \leq s_0 + s_1 + s_4 + s_9 + \ldots$ (add squared indices only)

Proof. When n = 4, the smallest square containing squares of side length s_0 , s_1 , s_2 , and s_3 has side length $s_0 + s_1$.

Corollary (Restatement of an Obvious Fact): A list of *N* squares of side length *s* can be packed inside of a square of side length $\lceil N^{1/2} \rceil s$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Idea: Represent a tree of nested sets in \mathbb{X} as a combinatorially equivalent tree of nested squares in \mathbb{R}^2

Pick a level $l \ge 1$. Given marked points $\{x_Q : Q \in T_l\}$, need to decide how to place a points $x'_Q = f^{-1}(x_Q)$ in the domain such that

$$|x_Q - x_R| = |f(x'_Q) - f(x'_R)| \le |x'_Q - x'_R|$$
 or $|x'_Q - x'_R| \ge |x_Q - x_R|$.

Recursive construction (outline)

- 1. Suppose we can do the construction for trees of depth l 1.
- 2. Let \mathcal{T} be a tree of depth $l \ge 1$ and let $\{x_Q : Q \in \mathcal{T}_l\}$ be given.
- 3. View the tree \mathcal{T} as a disjoint union of $N_0 = \#$ Child $(\text{Top}(\mathcal{T})) = \#\mathcal{T}_1$ trees of depth I - 1 (one such tree for each set in \mathcal{T}_1). For each $P \in \mathcal{T}_1$, we let $F_P = \{x_Q : Q \in \mathcal{T}_I \text{ and } Q \text{ is a descendant of } P\}$.
- 4. For each $P \in \mathcal{T}_1$, we can find a square $S_P \subset \mathbb{R}^2$, "domain points" $E_P \subset S_P$, and an 1-Lipschitz bijective map $f_P : E_P \to F_P$.
- 5. Key step: Let $D_0 = \text{diam} \operatorname{Top}(\mathcal{T})$ and let $s_{l-1} = \max\{\text{side } S_P : P \in \mathcal{T}_1\}$. Use the Lemma to pack $(\lceil N_0^{1/2} \rceil - 1)^2$ cubes of side length $s_{l-1} + D_0$ and $\lceil N_0^{1/2} \rceil^2 - ((\lceil N_0^{1/2} \rceil - 1)^2$ cubes of side length s_{l-1} into a cube of side

$$s_l = (\lceil N_0^{1/2} \rceil - 1)(D_0 + s_{l-1}) + s_{l-1} = \lceil N_0^{1/2} \rceil s_{l-1} + (\lceil N_0^{1/2} \rceil - 1)D_0$$

6. Solve the recursion formula.

Example of the domain of a map with level I = 2

There are 16 cubes in T_1 and each cube in T_1 has 25 children.

"Yellow blocks" are translations of squares produced by the recursive step. The side length of a "yellow block" is $(\lceil N_1^{1/2} \rceil - 1)D_1 = 4D_1$.

To get a 1-Lipschitz map, we must surround each "yellow block" (except the rightmost ones in each direction) by a "blue" gap of side length D_0 .

The total side length of the big square is

$$(\lceil N_0^{1/2} \rceil - 1)D_0 + \lceil N_0^{1/2} \rceil (\lceil N_1^{1/2} \rceil - 1)D_1 = 3D_0 + 4 \cdot 4D_1 = 3D_0 + 16D_1$$

Square Packing Construction

Theorem (Badger-Schul arXiv-2023)

Let $\mathcal{T} = \bigsqcup_{j=0}^{\infty} \mathcal{T}_j$ be a tree of sets in a metric space \mathbb{X} , requiring only that every set in the tree is contained in its parent. For each $j \ge 0$, assign

$$N_j = \max_{Q \in \mathcal{T}_j} \# \mathrm{Child}(Q)$$
 and $D_j = \max_{Q \in \mathcal{T}_j} \mathrm{diam} Q$.

Let $I \ge 1$ be an integer and suppose that $\mathcal{T}_I \neq \emptyset$. Compute

$$s = \sum_{j=0}^{l-1} \left(\prod_{i=0}^{j-1} \lceil N_i^{1/2} \rceil \right) (\lceil N_j^{1/2} \rceil - 1) D_j.$$

(When j = 0, $\prod_{i=0}^{j-1} \lceil N_i^{1/2} \rceil = 1$.) For any set or multiset $F = \{x_Q \in Q : Q \in T_l\}$, there is a set $E \subset \ell_{\infty}^2 \cap [0, s]^2$ with #E = #F and we can construct a 1-Lipschitz bijection $f : E \to F$.

Remark (Hölder maps): If you replace the quantity D_j in *s* by D_j^{α} , then the construction produces Hölder bijection $f : E \to F$ of exponent $1/\alpha$.

Square Packing Construction + Arzela-Ascoli

Corollary (Badger-Schul arXiv-2023)

Let \mathcal{T} be a tree of nested sets in a metric space \mathbb{X} , requiring only that every set in the tree is contained in its parent. Assume each level of the tree is nonempty. As before, for each $j \ge 0$, assign

$$N_j = \max_{Q \in \mathcal{T}_j} \# \text{Child}(Q)$$
 and $D_j = \max_{Q \in \mathcal{T}_j} ext{diam } Q$.

Suppose that

$$L = \sum_{j=0}^{\infty} \left(\prod_{i=0}^{j} \lceil N_i^{1/2} \rceil \right) D_j < \infty.$$

Then there exists a compact set $E \subset [0, 1]^2$ and an L-Lipschitz map $f : [0, 1]^2 \cap \ell_{\infty}^2 \to \mathbb{X}$ such that Leaves $(\mathcal{T}) \subset f(E)$.

Remark (Higher-Dimensional Domains): The same construction lets you build Lipschitz maps from subsets of $[0, 1]^m$ when $m \ge 3$. Simply replace the quantity $\lceil N_j^{1/2} \rceil$ with $\lceil N_j^{1/m} \rceil$.

Example of Using the Square Packing Construction

Let $\alpha > 1$. Recall that we built a Cantor set F in \mathbb{R}^3 by starting with $[0, 1]^3$ and then replacing each cube in level n with 9 children of side length $s_{n+1} = \frac{1}{(n+1)^{\alpha}} 3^{-(n+1)}$.

Cubes in level *n* have $N_n = 9$ children and diameter $D_n = \frac{\sqrt{3}}{n^{\alpha}} 3^{-n}$

$$L = \sum_{n=0}^{\infty} \left(\prod_{k=0}^{n} \lceil N_{k}^{1/2} \rceil \right) D_{n} = \sum_{n=0}^{\infty} 3^{n+1} D_{n} = 3\sqrt{3} + 3\sqrt{3} \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} < \infty$$

Therefore, there exists a compact set $E \subset [0, 1]^2$ an *L*-Lipschitz map $f : E \to \mathbb{R}^3$ such that f(E) = F.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Easy Application of Square Packing Construction

The Assouad dimension of a set in a metric space (I'll skip the definition) is at least as large as the Minkowski dimension: $\dim_M F \leq \dim_A F$.

For any b > 1 the definition of dim_A F naturally yields a tree of sets with Leaves(\mathcal{T}) = F and $N_j = \max\{\# \operatorname{Child}(Q) : Q \in \mathcal{T}_j\} \leq b^{\dim_A F}$ and $D_j = \max\{\operatorname{diam} Q : Q \in \mathcal{T}_j\} \leq b^{-j}$. Taking b to be sufficiently large and applying the Square Packing Construction to \mathcal{T} gives

Theorem (Badger-Schul arXiv-2023)

If \mathbb{X} is a complete metric space. If $F \subset \mathbb{X}$ is compact, $m \ge 1$ is an integer, and $\dim_A F < m$, then \exists Lipschitz map $f : E \subset [0, 1]^m \to \mathbb{X}$ such that $f(E) \supset F$.

Remark 1: This theorem is now superseded by Balka-Keleti.

Remark 2: On the other hand, the proof of Assouad dimension theorem is much easier/shorter than the proof of the Minkowski dimension theorem.

Remark 3: Balka-Keleti is not specific to Euclidean domains and cannot be used to check *m*-rectifiability for sets of dimension *m* (like previous slide).

Part I Background and Related Results

Part II "Square Packing Construction" of Lipschitz Maps

Part III Rectifiable Doubling Measures in Ahlfors Regular Spaces

・ロト・日本・日本・日本・日本・今日・

Context: Doubling Measures and Rectifiable Curves

For this talk a doubling measure μ on a metric space X is a Radon measure such that for some constant *C*,

 $0 < \mu(B(x, 2r)) \le C\mu(B(x, r)) < \infty$ for all $x \in \mathbb{X}$ and r > 0

Theorem (Volberg-Konyagin 1987, Luukkainen-Saskman 1998)

If X is a complete, doubling metric space (i.e. every ball of radius 2r can be covered by at most C' balls of radius r), then there are doubling measures on X.

Lemma

If μ is a doubling measure on \mathbb{R}^d , $d \ge 2$, and $F \subset \mathbb{R}^d$ is q-Ahlfors regular set for some q < d, then F is porous and $\mu(F) = 0$. In particular, doubling measures on \mathbb{R}^d do not charge C^1 and bi-Lipschitz curves (i.e. they are μ null sets).

Theorem (Garnett-Killip-Schul 2010)

For all $d \ge 2$, there exist doubling measures μ on \mathbb{R}^d that are 1-rectifiable. Hence $\mu(\Gamma) > 0$ for some rectifiable curve Γ (with Assouad dimension d).

Rectifiable Doubling Measures with Prescribed Hausdorff and Packing Dimensions

Theorem (Badger-Schul arXiv-2023)

Let X be a complete, Ahlfors q-regular metric space. Let m be an integer with q > m - 1. Given any $0 < s_H < s_P < q$ with $m - 1 < s_P < m$ and $s_P < q$, there exists a doubling measure μ on X such that

- 1. μ has Hausdorff dimension s_H : lim inf $_{r\downarrow 0} \frac{\log \mu(B(x,r))}{\log r} = s_H$ at μ -a.e. x_r ,
- 2. μ has packing dimension s_P : $\limsup_{r \downarrow 0} \frac{\log \mu(B(x,r))}{\log r} = s_P$ at μ -a.e. x,
- 3. μ is *m*-rectifiable (i.e. carried by Lipschitz images of $E \subset [0, 1]^m$),
- 4. μ is purely (m 1)-unrectifiable (i.e. singular to Lipschitz images of $E \subset [0, 1]^{m-1}$).

Conjecture (Badger-Schul arXiv-2023): The theorem also holds at the endpoint parameters, i.e. if $s_P = m - 1$, $s_P = m$, or $s_P = q$.

Examples

- 1. There exist doubling measures μ on \mathbb{R}^3 of Hausdorff dimension $s_H = 0.0001$ and packing dimension $s_P = 1.9999$ that are 2-rectifiable and purely 1-unrectifiable.
- Any compact self-similar set of Hausdorff dimension *q* in ℝ^d that satisfies the open set condition is Ahlfors *q*-regular and supports a [*q*]-rectifiable doubling measure that is purely ([*q*] − 1)-unrectifiable. These examples include Cantor sets, which are totally disconnected.
- 3. The Koch snowflake curve in \mathbb{R}^2 contains no non-trivial rectifiable subcurves, but is Ahlfors $\log_3(4)$ -regular. Thus, the snowflake curve supports 1-rectifiable doubling measures of Hausdorff and packing dimension 1ϵ for any $\epsilon > 0$.
- 4. When s > m and I = [0, 1]^m is equipped with the snowflake metric d(x, y) = |x y|^{m/s}, the space I is Ahlfors s-regular and H^s ∟ I is purely *m*-unrectifiable (because s > m). Nevertheless, the space I supports an *m*-rectifiable doubling measure that is purely (m 1)-unrectifiable.

"Euclidean-Like" Measures on the Heisenberg Group

The first Heisenberg group \mathbb{H}^1 is a nonabelian step 2 Carnot group that is topologically equivalent to \mathbb{R}^3 , but equipped with a metric so that \mathbb{H}^1 has Hausdorff dimension 4 and is Ahlfors 4-regular.

By theorem of Ambrosio and Kirchheim, the Hausdorff measures $\mathcal{H}^m \sqcup \mathbb{H}^1$ are purely *m*-unrectifiable for all $m \in \{2, 3, 4\}$. Even so, for all $m \in \{2, 3, 4\}$ and s < m, there exist doubling measures μ on \mathbb{H}^1 and Lipschitz maps $f : E \subset \mathbb{R}^m \to \mathbb{H}^1$ such that $\mu \ll \mathcal{H}^{s-\epsilon}$ for all $\epsilon > 0$, dim_{*H*} f(E) = s, and $\mu(f(E)) > 0$. That is, **doubling measures on** \mathbb{H}^1 **can charge Lipschitz images of Euclidean spaces of almost maximal dimension.**

Remarks

- s_P > m − 1 implies that µ is purely (m − 1)-unrectifiable is (or should be!) well-known
- Any doubling measure on vanishes on porous sets, including images of lower-dimensional bi-Lipschitz embeddings into R^d. So a bi-Lipschitz technique like David and Toro's variant of the Reifenberg algorithm is useless for proving rectifiability of a doubling measure.
- ► To prove that µ is m-rectifiable, we use s_P < m and the square packing construction, but this also follows from Balka-Keleti. Finer analysis with square packing construction should yield the case s_P = m.
- In these examples, Hausdorff dimension is essentially irrelevant to rectifiability. It is packing dimension that matters.
- So the essential point is to build a doubling measure µ satisfying m − 1 < dim_P µ < m. For X = R^d, we can use a Bernoulli product. For general Ahlfors regular X, we could not locate such measures in the literature and build quasi-Bernoulli measures using the metric cubes of Käenmäki-Rajala-Suomala

Quasi-Bernoulli Measures with Prescribed Dimensions

Let X be complete, *q*-Ahlfors regular. We start with any doubling measure ν , pick a sequence $\mathbf{s} = (s_k)_{k=1}^{\infty}$ of "target dimensions", let Δ be a system of (KRS) *b*-adic cubes on X with $b \ge 47$ sufficiently large depending on X and s, and then redistribute the mass below scale 1 to produce a doubling measure μ with prescribed dimensions: dim_H $\mu = \liminf_{n \to \infty} \frac{1}{n}(s_1 + \dots + s_n)$ and dim_P $\mu = \limsup_{n \to \infty} \frac{1}{n}(s_1 + \dots + s_n)$

Without exact counts of cubes, we need to do some actual work to arrange that the entropy of each level of the system takes prescribed values.

To get a doubling measure and prescribed entropy we need three weights per cube. It is crucial that the "outer weights" α do not depend on the cube Q.

ヘロト・4回ト・4回ト・4回ト・4回ト

The Key Computation: How to Pick the Weights

Lemma (Badger-Schul arXiv-2023)

If b > 1 and L and M are positive integers such that $L \le b^{y}$ and $M \ge b^{s}$ for some s, y > 0, then there exists a number $\alpha_{0} = \alpha_{0}(b, y, s)$ such that for all $0 \le \alpha \le \alpha_{0}$, there exist unique numbers $\beta = \beta(\alpha, b, y, s, L, M)$ and $\gamma = \gamma(\alpha, b, y, s, L, M)$ such that

$$L\alpha + (M-1)\beta + \gamma = 1 \tag{1}$$

and the entropy function

$$h_{b,L,M}(\alpha,\beta) := L\alpha \log_b(1/\alpha) + (M-1)\beta \log_b(1/\beta) + \gamma \log_b(1/\gamma) = s.$$
 (2)

We may always bound $L\alpha \log_b(1/\alpha) \leq \min(1, s)/e$, $L\alpha \leq \min(1, s^2)/e^2$,

$$\gamma \ge 1 - L\alpha - \frac{s - L\alpha \log_b(1/\alpha)}{\log_b(M-1)} \ge 1 - \frac{\min(1, s^2)}{e^2} - \left(1 - \frac{1}{e}\right) \frac{s}{\log_b(M-1)},$$
(3)

and
$$\gamma \geq \frac{1-L\alpha}{M} \geq \frac{1}{M} \left(1 - \frac{\min(1,s^2)}{e^2}\right) \geq \frac{1}{M} \left(1 - \frac{1}{e^2}\right).$$
 (4)

Moreover, if $2e^2 \log_b(e^2) \leq (\frac{1}{2} - \frac{1}{e})s$, then

$$\beta \geq \frac{s}{2(M-1)\log_b(M-1)}.$$
(5)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Actual Definition of the Quasi-Bernoulli Measures

Definition (Badger-Schul arXiv-2023)

Let X be a complete Ahlfors *q*-regular metric space with diam $X \ge 2.1$, let ν be a doubling measure on X, and let $s = (s_k)_{k=1}^{\infty}$ be a sequence of positive numbers ("target dimensions") such that

$$s_* := \inf_{k \ge 1} s_k > 0$$
 and $s^* := \sup_{k \ge 1} s_k < q.$ (6)

Let $(\Delta_k)_{k \in \mathbb{Z}}$ be a system of *b*-adic cubes for \mathbb{X} for some large $b \ge 47$. For all $Q \in \Delta$, assign $L_Q := #$ Outer(Q), $M_Q := #$ Inner(Q), and $N_Q := #$ Child(Q). We require that *b* be large enough depending on at most \mathbb{X} and s^* so that

$$M_Q \ge b^{s^*}$$
 and $L_Q \le N_Q \le b^{q+1}$ for all $Q \in \Delta_+ = \bigcup_{k=0}^{\infty} \Delta_k$. (7)

 $\text{Let } 0 < \alpha \leq \left(\frac{1}{2}\min\{s_*,1\}\ln(b)b^{-(q+1)}\right)^2 \text{ be a given weight. For all } k \geq 0 \text{ and } Q \in \Delta_k, \text{ use the Lemma to define unique weights } C \leq \alpha \leq 1 \text{ for all } k \geq 0 \text{ and } Q \in \Delta_k, \text{ and } k \geq 0 \text{ and } Q \in \Delta_$

$$\beta_Q = \beta(\alpha, b, q+1, s_{k+1}, L_Q, M_Q)$$
 and $\gamma_Q = \gamma(\alpha, b, q+1, s_{k+1}, L_Q, M_Q)$

satisfying

$$1 = L_Q \alpha + (M_Q - 1)\beta_Q + \gamma_Q \text{ and } h_{b, L_Q, M_Q}(\alpha, \beta_Q) = s_{k+1}.$$
 (8)

We specify a Radon measure μ_s on X by specifying its values on cubes as follows:

- Declare μ_s(Q) := ν(Q) for all Q ∈ Δ₀.
- 2. For all $k \ge 0$ and $Q \in \Delta_k$, declare $\mu_{\mathbb{S}}(R) := \alpha \mu_{\mathbb{S}}(Q)$ for all $R \in \text{Outer}(Q)$, declare $\mu_{\mathbb{S}}(R) := \beta_Q \mu_{\mathbb{S}}(Q)$ for all $R \in \text{Inner}(Q) \setminus \{Q^{\downarrow}\}$, and declare $\mu_{\mathbb{S}}(Q^{\downarrow}) := \gamma_Q \mu_{\mathbb{S}}(Q)$.

We call μ s a quasi-Bernoulli measure on X with target dimensions s, background measure ν , and outer weight α .

Thank you for your attention!

View from the UConn Math Department

and the second second second

· · · · · · · · · · · ·