Due In Class: Tuesday, October 13

Reading: Read Chapter 3.

Do the following problems.

Problem A: Exercise 2.30.

Problem B: Let (CB, HD) denote the metric space of nonempty compact subsets of the plane \mathbb{R}^2 , equipped with the Hausdorff distance. Prove that (CB, HD) is separable.

Problem C: Exercise 3.1.

Problem D: Using the definition of the limit, prove that if $(a_n)_{n=1}^{\infty}$ is a sequence of nonnegative real numbers and $a = \lim_{n \to \infty} a_n$ exists, then $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}$.

Problem E: Exercise 3.2. You must prove your assertions.

Problem F: Let X and Y be metric spaces, let $f : X \to Y$ be Lipschitz (i.e. there exists $L \in [0,\infty)$ such that $\operatorname{dist}_Y(f(x_1), f(x_2)) \leq L \operatorname{dist}_X(x_1, x_2)$ for all $x_1, x_2 \in X$. Prove that if $(x_n)_{n=1}^{\infty}$ is a convergence sequence in X, then $(f(x_n))_{n=1}^{\infty}$ is a convergent sequence in Y.