Due In Class: Thursday, September 17

Reading: If you haven't done so already, please take a glance at Some Remarks on Writing Mathematical Proofs by John M. Lee, available at

http://www.math.washington.edu/~lee/Writing/writing-proofs.pdf

Start reading Chapter 2 in the textbook.

Prove the following statements.

Theorem 1. Let X and Y be arbitrary sets. A function $f: X \to Y$ is surjective if and only if f has a right inverse g, i.e. a function $g: Y \to X$ such that f(g(y)) = y for all $y \in Y$.

Theorem 2 (Exercise 2.2). The set of algebraic complex numbers is countable.

Theorem 3 (Exercise 2.4). The set of irrational real numbers is uncountable.

Theorem 4 (Exercise 2.7). Let A_1, A_2, \ldots be subsets of a metric space. Then:

- (a) For all $n \ge 1$, $\overline{\bigcup_{i=1}^{n} A_i} = \bigcup_{i=1}^{n} \overline{A_i}$. (b) The set $\overline{\bigcup_{i=1}^{\infty} A_i} \supseteq \bigcup_{i=1}^{\infty} \overline{A_i}$. (c) The previous inclusion may be strict.

Theorem 5 (Exercise 2.8). Let $U \subset \mathbb{R}^2$ be an open set. Every point of U is an accumulation point of U.

Theorem 6. Every closed ball in a metric space (i.e. a set of the form $\overline{B}(x,r) = \{y : \operatorname{dist}(x,y) \leq x \}$ r}) is a closed set.