Due In Class: Thursday, October 2.
Reading: Finish reading Chapter 3 in the textbook before the midterm on October 7.
Turn in the following problems. Exercise a.b refers to Exercise b in Chapter a of the textbook.
Problem A: Exercise 3.3
Problem B: Exercise 3.23
Problem C: Exercise 3.24(b,c) (You may assume 3.24(a) without proof.)
Problem D: Exercise 3.24(d,e) (You may assume 3.24(a,b,c) without proof.)
Problem E: Let X be the metric space of nonempty compact subsets of \mathbb{R}^{2} equipped with the Hausdorff distance (as defined on previous homework assignments). Given any $K \in X$, let X_{K} denote the subset of X consisting of all nonempty compact subsets of K (including K). Prove that for all points $K \in X$, the set X_{K} is totally bounded in X, i.e. for all $\varepsilon>0, X_{K}$ can be covered by finitely many balls $B\left(K_{1}, \varepsilon\right), \ldots, B\left(K_{n}, \varepsilon\right)$ in X.

