Due In Class: Thursday, October 2.

Reading: Finish reading Chapter 3 in the textbook before the midterm on October 7.

Turn in the following problems. Exercise a.b refers to Exercise b in Chapter a of the textbook.

Problem A: Exercise 3.3

Problem B: Exercise 3.23

Problem C: Exercise 3.24(b,c) (You may assume 3.24(a) without proof.)

Problem D: Exercise 3.24(d,e) (You may assume 3.24(a,b,c) without proof.)

Problem E: Let X be the metric space of nonempty compact subsets of \mathbb{R}^2 equipped with the Hausdorff distance (as defined on previous homework assignments). Given any $K \in X$, let X_K denote the subset of X consisting of all nonempty compact subsets of K (including K). Prove that for all points $K \in X$, the set X_K is totally bounded in X, i.e. for all $\varepsilon > 0$, X_K can be covered by finitely many balls $B(K_1, \varepsilon), \ldots, B(K_n, \varepsilon)$ in X.