Due In Class: Thursday, September 18
Reading: Finish reading Chapter 2 in the textbook.
Turn in the following problems. Exercise a.b refers to Exercise b in Chapter a of the textbook.
Problem A: Let $\mathcal{P}=\mathcal{P}\left(\mathbb{R}^{2}\right)$ denote the collection of subsets of \mathbb{R}^{2}; let $\mathcal{S}=\mathcal{S}\left(\mathbb{R}^{2}\right)$ denote the collection of nonempty subsets of \mathbb{R}^{2}. Define a function ex : $\mathcal{P} \times \mathcal{S} \rightarrow[0, \infty]$ by the rule

$$
\operatorname{ex}(A, B)= \begin{cases}\sup _{a \in A} \inf _{b \in B}|a-b| & \text { if } A \in \mathcal{S} \\ 0 & \text { if } A=\emptyset\end{cases}
$$

(Here we formally write $\sup E=\infty$ for a set $E \subseteq \mathbb{R}$ if E is not bounded above. By convention $x+\infty=\infty+\infty=\infty$ for all $x \in \mathbb{R}$.) The quantity $\operatorname{ex}(A, B)$ is called the excess of A over B.

Prove that excess satisfies the triangle inequality: $\operatorname{ex}(A, C) \leq \operatorname{ex}(A, B)+\operatorname{ex}(B, C)$ for all sets $A, B, C \in \mathcal{P}$ such that ex $(A, B), \operatorname{ex}(A, C)$ and $\operatorname{ex}(B, C)$ are all defined.

Problem B: Let $\mathcal{C B}=\mathcal{C B}\left(\mathbb{R}^{2}\right)$ denote the collection of closed, bounded subsets of \mathbb{R}^{2}. Define $\mathrm{HD}: \mathcal{C B} \times \mathcal{C B} \rightarrow[0, \infty)$ by the rule

$$
\operatorname{HD}(A, B)=\max \{\operatorname{ex}(A, B), \operatorname{ex}(B, A)\} \quad \text { for all } A, B \in \mathcal{C B}
$$

The quantity $\operatorname{HD}(A, B)$ is called the Hausdorff distance between A and B.
(a) Prove that $(\mathcal{C B}, \mathrm{HD})$ is a metric space.
(b) Describe in words and/or pictures the open ball $B\left([0,1] \times\{0\}, \frac{1}{4}\right)$ in this metric space.

Problem C: Exercise 2.12.
Problem D: Exercise 2.13. You must prove your assertions.
Problem E: Exercise 2.15.

