Due In Class: Thursday, September 18

Reading: Finish reading Chapter 2 in the textbook.

Turn in the following problems. Exercise a.b refers to Exercise b in Chapter a of the textbook.

Problem A: Let $\mathcal{P} = \mathcal{P}(\mathbb{R}^2)$ denote the collection of subsets of \mathbb{R}^2 ; let $\mathcal{S} = \mathcal{S}(\mathbb{R}^2)$ denote the collection of nonempty subsets of \mathbb{R}^2 . Define a function ex : $\mathcal{P} \times \mathcal{S} \to [0, \infty]$ by the rule

$$\operatorname{ex}(A,B) = \begin{cases} \sup_{a \in A} \inf_{b \in B} |a-b| & \text{if } A \in \mathcal{S} \\ 0 & \text{if } A = \emptyset. \end{cases}$$

(Here we formally write $\sup E = \infty$ for a set $E \subseteq \mathbb{R}$ if E is not bounded above. By convention $x + \infty = \infty + \infty = \infty$ for all $x \in \mathbb{R}$.) The quantity ex(A, B) is called the *excess of A over B*.

Prove that excess satisfies the triangle inequality: $ex(A, C) \le ex(A, B) + ex(B, C)$ for all sets $A, B, C \in \mathcal{P}$ such that ex(A, B), ex(A, C) and ex(B, C) are all defined.

Problem B: Let $\mathcal{CB} = \mathcal{CB}(\mathbb{R}^2)$ denote the collection of closed, bounded subsets of \mathbb{R}^2 . Define HD : $\mathcal{CB} \times \mathcal{CB} \to [0, \infty)$ by the rule

$$HD(A, B) = \max \{ ex(A, B), ex(B, A) \} \text{ for all } A, B \in \mathcal{CB}.$$

The quantity HD(A, B) is called the Hausdorff distance between A and B.

(a) Prove that (CB, HD) is a metric space.

(b) Describe in words and/or pictures the open ball $B([0,1] \times \{0\}, \frac{1}{4})$ in this metric space.

Problem C: Exercise 2.12.

Problem D: Exercise 2.13. You must prove your assertions.

Problem E: Exercise 2.15.