This is the last homework assignment.
Due In Class: Thursday, December 4.
Reading: Read Chapter 7.
Turn in the following problems. Exercise a.b refers to Exercise b in Chapter a of the textbook.
Problem A: Let $\left[a_{k}, b_{k}\right]$ be a sequence of closed intervals shrinking to $x_{0}$, i.e.

$$
\bigcap_{k=1}^{\infty}\left[a_{k}, b_{k}\right]=\left\{x_{0}\right\} .
$$

Prove that if $f(x)$ is Riemann integrable near $x_{0}$ and continuous at $x_{0}$, then

$$
f\left(x_{0}\right)=\lim _{k \rightarrow \infty} \frac{1}{b_{k}-a_{k}} \int_{a_{k}}^{b_{k}} f(x) d x .
$$

Hint: Use ideas from the proof of Theorem 6.20.
Problem B: Exercise 7.2 (multiplication only) and 7.3
Problem C: Exercise 7.9
Problem D: Suppose $\alpha \in(0,1]$ and $f_{k}:[0,2] \rightarrow \mathbb{R}$ for all $k \geq 1$. Prove that if $f_{k}(1)=1$ for all $k \geq 1$ and there exists a constant $C \in[0, \infty)$ such that

$$
\left|f_{k}(x)-f_{k}(y)\right| \leq C|x-y|^{\alpha} \quad \text { for all } x, y \in[0,2] \text { and } k \geq 1
$$

then $\left(f_{k}\right)_{k=1}^{\infty}$ has a uniformly convergent subsequence whose limit $f$ also satisfies ( $\star$ ).
Remark: A function satisfying ( $\star$ ) is called Hölder continuous of order $\alpha$.
Problem E: Exercise 7.18
The following statement is a corrected version of Portfolio Problem 3 that should be included in the final draft of your writing portfolio.

Portfolio Problem 3: Let $X$ be a metric space. A (closed) curve in $X$ is a continuous map $\gamma:[a, b] \rightarrow X$. The length $\ell(\gamma)$ of $\gamma$ is given by

$$
\ell(\gamma):=\sup \left\{\sum_{i=1}^{n} d_{X}\left(\gamma\left(t_{i-1}\right), \gamma\left(t_{i}\right)\right): a=t_{0} \leq t_{1} \leq \cdots \leq t_{n}=b, n \geq 1\right\} \in[0, \infty] .
$$

If $\ell(\gamma)<\infty$, then $\gamma$ is called a rectifiable curve. For every increasing continuous map from $[c, d]$ onto $[a, b]$, the curve $\gamma \circ r:[c, d] \rightarrow X$ is called a reparameterization of $\gamma$.
(a) Prove that if $\gamma$ is Lipschitz continuous, then $\gamma$ is a rectifiable curve.
(b) Prove that if $\gamma$ is a rectifiable curve, then there exists a rectifiable curve $\tilde{\gamma}:[0, \ell(\gamma)] \rightarrow X$ and an increasing continuous map $s$ from $[a, b]$ onto $[0, \ell(\gamma)]$ such that $\gamma=\tilde{\gamma} \circ s$ and

$$
\ell\left(\tilde{\gamma}_{[p, q]}\right)=q-p \quad \text { for all } 0 \leq p \leq q \leq \ell(\gamma) .
$$

The curve $\tilde{\gamma}$ is called the arc-length parameterization of $\gamma$.

