All problem sets are optional. If you turn in solutions to problems, I will read and return them to you with feedback.

Problem G: Let $E \subset \mathbb{R}^{2}$ be the four-corner Cantor set, defined by starting with the unit square $[0,1]^{2}$, dividing into 16 equal size subsquares, deleting all but the four corner squares, and iterating. For this problem you may assume without proof that $\mathcal{H}^{1}(E)=\sqrt{2}$.
(1) Prove that

$$
\liminf _{r \downarrow 0} \frac{\mathcal{H}^{1}(E \cap B(0, r))}{2 r}<\limsup _{r \downarrow 0} \frac{\mathcal{H}^{1}(E \cap B(0, r))}{2 r} .
$$

(2) Find upper and lower bounds on the quantities in part (1).

Problem H (Challenging): Let E be the four-corner Cantor set. Again, you may assume that $\mathcal{H}^{1}(E)=\sqrt{2}$. Prove that at \mathcal{H}^{1}-a.e. $x \in E$,

$$
\liminf _{r \downarrow 0} \frac{\mathcal{H}^{1}(E \cap B(x, r))}{2 r}<1 .
$$

Problem I: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfy the Hölder inequality $|f(x)-f(y)| \leq H|x-y|^{1 / s}$ for some $H<\infty$ and $s \geq 1$. Given $t \geq 0$ and $A \subset \mathbb{R}^{n}$ satisfying $0<\mathcal{H}^{t}(A)<\infty$, find the best possible bounds on the Hausdorff dimension and corresponding Hausdorff measure of $f(A)$.

