Hölder parameterizations of Bedford-McMullen carpets and connected IFS

Matthew Badger
University of Connecticut
Department of Mathematics

Fall AMS Meeting Madison
A&P on Metric Spaces and Fractals
September 14–15, 2019

Joint work with Vyron Vellis (Tennessee)

This research is partially supported by NSF grant DMS 1650546
A curve Γ in a metric space X is a **continuous image** of $[0, 1]$: There exists a continuous map $f : [0, 1] \to X$ such that $\Gamma = f([0, 1])$

A continuous map f with $\Gamma = f([0, 1])$ is called a **parameterization** of Γ

- There are curves which do not have a 1-1 parameterization
- There are curves which have topological dimension > 1
- The modulus of continuity of a parameterization is a proxy for the size/regularity/complexity of a curve
Two characterizations (early 20th century)

Hahn-Mazurkiewicz Theorem A set Γ in a metric space is a **curve** if and only if Γ is compact, connected, locally connected.

Ważewski Theorem A set Γ in a metric space is a **rectifiable curve** iff Γ is a **Lipschitz curve** iff Γ is compact, connected, and $\mathcal{H}^1(\Gamma) < \infty$

- In \mathbb{R}^n: Lipschitz curves (also called *rectifiable curves*) admit unique tangent lines at \mathcal{H}^1-a.e. point by Rademacher’s theorem.
- Note compact, connected, and $\mathcal{H}^1(\Gamma) < \infty$ implies Γ locally connected! This can fail for sets with σ-finite length (e.g. a topologist’s comb).

f is Lipschitz if $\exists L < \infty$ such that $|f(x) - f(y)| \leq L|x - y|$ for all x, y

\mathcal{H}^s denotes the s-dimensional Hausdorff measure
Two characterizations (early 20th century)

Hahn-Mazurkiewicz Theorem A set \(\Gamma \) in a metric space is a curve if and only if \(\Gamma \) is compact, connected, locally connected.

![Image of a curve](image1)

Ważewski Theorem A set \(\Gamma \) in a metric space is a rectifiable curve iff \(\Gamma \) is a Lipschitz curve iff \(\Gamma \) is compact, connected, and \(\mathcal{H}^1(\Gamma) < \infty \)

- In \(\mathbb{R}^n \): Lipschitz curves (also called rectifiable curves) admit unique tangent lines at \(\mathcal{H}^1 \)-a.e. point by Rademacher’s theorem
- Note compact, connected, and \(\mathcal{H}^1(\Gamma) < \infty \) implies \(\Gamma \) locally connected! This can fail for sets with \(\sigma \)-finite length (e.g. a topologist’s comb)

\(f \) is Lipschitz if \(\exists L < \infty \) such that \(|f(x) - f(y)| \leq L|x - y| \) for all \(x, y \)

\(\mathcal{H}^s \) denotes the s-dimensional Hausdorff measure
What about higher-dimensional curves?
What about higher-dimensional curves?

Open Problem (#1)

For each real \(s \in (1, \infty) \), characterize curves \(\Gamma \subset \mathbb{R}^n \) with \(\mathcal{H}^s(\Gamma) < \infty \)

Open Problem (#2)

For each real \(s \in (1, \infty) \), characterize \((1/s)\)-Hölder curves, i.e. sets that can be presented as \(h([0, 1]) \) for some map \(h : [0, 1] \to \mathbb{R}^n \) with

\[
|h(x) - h(y)| \leq H|x - y|^{1/s}
\]

- Every \((1/s)\)-Hölder curve has \(\mathcal{H}^s(\Gamma) < \infty \) (exercise)
- Example (B-Naples-Vellis, Adv. Math. 2019): For every \(s \in (1, n) \), \(\exists \) a curve \(\Gamma \subset \mathbb{R}^n \) that is \(s \)-Ahlfors regular, \(\mathcal{H}^s(\Gamma \cap B(x, r)) \approx r^s \), but \(\Gamma \) is not a \((1/s)\)-Hölder curve.
Why?

- There are many dimensions between 1 and 2
- Lipschitz surfaces are Hölder curves:
 to study the former, first study the latter
- Martín and Mattila (1993,2000) developed a portion of
 Besicovitch’s fine theory of 1-sets in \mathbb{R}^2 works for s-sets in \mathbb{R}^n
 using Hölder curves as a replacement for rectifiable curves
- There exist metric spaces without rectifiable curves that are
 Hölder path connected
- Modulus of path families makes sense for Hölder curves
- Random settings: Brownian motion, rough paths theory
- Possible tool for singular integrals in codimension > 1
Sufficient conditions for Hölder curves

Theorem (Remes 1998)

Let $S \subset \mathbb{R}^n$ be a self-similar set satisfying the open set condition. If S is connected, then S is a $(1/s)$-Hölder curve, $s = \dim_{H} S$.

A set $E \subset \mathbb{R}^n$ is β-flat if for every $x \in E$ and $r > 0$, there exists a line ℓ such that $\text{dist}(x, \ell) \leq \beta r$ for all $x \in E \cap B(x, r)$.

There exists a universal constant $\beta_0 \in (0, 1)$ such that if $E \subset \mathbb{R}^n$ is β_0-flat, connected, compact, $\mathcal{H}^s(E) < \infty$, and $\mathcal{H}^s(E \cap B(x, r)) \gtrsim r^s$, then E is a $(1/s)$-Hölder curve.
Sufficient conditions for Hölder curves

Theorem (Remes 1998)

Let $S \subset \mathbb{R}^n$ be a self-similar set satisfying the open set condition. If S is connected, then S is a $(1/s)$-Hölder curve, $s = \dim_H S$.

A set $E \subset \mathbb{R}^n$ is β-flat if for every $x \in E$ and $r > 0$, there exists a line ℓ such that $\text{dist}(x, \ell) \leq \beta r$ for all $x \in E \cap B(x, r)$.

There exists a universal constant $\beta_0 \in (0, 1)$ such that if $E \subset \mathbb{R}^n$ is β_0-flat, connected, compact, $\mathcal{H}^s(E) < \infty$, and $\mathcal{H}^s(E \cap B(x, r)) \gtrsim r^s$, then E is a $(1/s)$-Hölder curve.
Iterated Function Systems (Quick Review)

Let X be a complete, separable metric space. A **contraction** in X is a map $\phi : X \to X$ with Lipschitz constant $\text{Lip}(\phi)$ strictly less than 1

$$\text{Lip}(\phi) = \inf\{L \geq 0 : \text{dist}(\phi(x), \phi(y)) \leq L \text{dist}(x, y)\}$$

Hutchinson’s Theorem For every finite family \mathcal{F} of contractions in X, there exists a unique compact set $K \subset X$ such that $K = \bigcup_{\phi \in \mathcal{F}} \phi(K)$.

- \mathcal{F} is called an **iterated function system**
- $K = K_{\mathcal{F}}$ is called the **attractor** of \mathcal{F}
- $\mathcal{H}^s(K) < \infty$ where s is the **similarity dimension** of \mathcal{F}, i.e.

$$s \geq 0 \text{ is the unique number such that } \sum_{\phi \in \mathcal{F}} \text{Lip}(\phi)^s = 1$$

- If each $\phi \in \mathcal{F}$ is a similarity, i.e. $\text{dist}(\phi(x), \phi(y)) = \lambda_\phi \text{dist}(x, y)$, then we call K a **self-similar set**
"Iterated Function Systems", Google Image Search, 3pm (Atlanta) on 9/13/2019
IFS with Connected Attractors

Theorem (Hata 1985)

Let \mathcal{F} be an IFS over a complete metric space. If $K_{\mathcal{F}}$ is connected, then $K_{\mathcal{F}}$ is path connected and locally connected. Thus, $K_{\mathcal{F}}$ is a curve.

Let \mathcal{F} be an IFS over a complete metric space; let s be the similarity dimension of \mathcal{F}.

Theorem (B-Vellis, arXiv October 2019 (I’m optimistic))

If $K_{\mathcal{F}}$ is connected, then $K_{\mathcal{F}}$ is $(1/s)$-Hölder path connected.

Theorem (B-Vellis, arXiv October 2019)

If $K_{\mathcal{F}}$ is connected, then $K_{\mathcal{F}}$ is a $(1/\alpha)$-Hölder curve for every $\alpha > s$.

- Second theorem is a corollary of the first, viewing $K_{\mathcal{F}}$ as leaves of a tree with $(1/s)$-Hölder edges (cf. B-Vellis JGA 2019)
IFS with Connected Attractors

Theorem (Hata 1985)

Let \mathcal{F} be an IFS over a complete metric space. If $K_{\mathcal{F}}$ is connected, then $K_{\mathcal{F}}$ is path connected and locally connected. Thus, $K_{\mathcal{F}}$ is a curve.

Let \mathcal{F} be an IFS over a complete metric space; let s be the similarity dimension of \mathcal{F}.

Theorem (B-Vellis, arXiv October 2019 (I’m optimistic))

If $K_{\mathcal{F}}$ is connected, then $K_{\mathcal{F}}$ is $(1/s)$-Hölder path connected.

Theorem (B-Vellis, arXiv October 2019)

If $K_{\mathcal{F}}$ is connected, then $K_{\mathcal{F}}$ is a $(1/\alpha)$-Hölder curve for every $\alpha > s$.

- Second theorem is a corollary of the first, viewing $K_{\mathcal{F}}$ as leaves of a tree with $(1/s)$-Hölder edges (cf. B-Vellis JGA 2019)
Remes’ parameterization of self-similar sets

Let \mathcal{F} be an IFS over a complete metric space X that is \textbf{generated by similarities}; let s be the similarity dimension dimension of \mathcal{F}.

\textbf{Theorem}

\textit{If $K_\mathcal{F}$ is connected and $\mathcal{H}^s(K_\mathcal{F}) > 0$, then $K_\mathcal{F}$ is a $(1/s)$-Hölder curve.}

- Remes (1998) proved this when $X = \mathbb{R}^n$, where $\mathcal{H}^s(K_\mathcal{F}) > 0 \iff \text{SOSC} \iff \text{OSC} \implies \dim_H K_\mathcal{F} = s$ (Schief 1994)
- In complete metric spaces: $\mathcal{H}^s(K_\mathcal{F}) > 0 \implies \text{SOSC} \implies \dim_H K_\mathcal{F} = s$ (Schief 1996)
- Self-similar implies $K_\mathcal{F}$ with $\mathcal{H}^s(K_\mathcal{F}) > 0$ are s-Ahlfors regular
- To prove thm, embed $K_\mathcal{F}$ in ℓ_∞ and repeat Remes’ original proof

Open Set Condition: $\exists U$ open s.t. $\phi(U) \subseteq U$, $\phi(U) \cap \psi(U) = \emptyset$ for distinct $\phi, \psi \in \mathcal{F}$. Strong Open Set Condition: also $U \cap K_\mathcal{F} \neq \emptyset$.
Remes’ parameterization of self-similar sets

Let \mathcal{F} be an IFS over a complete metric space X that is generated by similarities; let s be the similarity dimension of \mathcal{F}.

Theorem

If $K_\mathcal{F}$ is connected and $H^s(K_\mathcal{F}) > 0$, then $K_\mathcal{F}$ is a $(1/s)$-Hölder curve.

- Remes (1998) proved this when $X = \mathbb{R}^n$, where $H^s(K_\mathcal{F}) > 0 \Leftrightarrow \text{SOSC} \Leftrightarrow \text{OSC} \Rightarrow \dim_H K_\mathcal{F} = s$ (Schief 1994)

- In complete metric spaces:

 $H^s(K_\mathcal{F}) > 0 \Rightarrow \text{SOSC} \Rightarrow \dim_H K_\mathcal{F} = s$ (Schief 1996)

- Self-similar implies $K_\mathcal{F}$ with $H^s(K_\mathcal{F}) > 0$ are s-Ahlfors regular

- To prove thm, embed $K_\mathcal{F}$ in ℓ_∞ and repeat Remes’ original proof

Open Set Condition: $\exists U$ open s.t. $\phi(U) \subseteq U$, $\phi(U) \cap \psi(U) = \emptyset$ for distinct $\phi, \psi \in \mathcal{F}$. Strong Open Set Condition: also $U \cap K_\mathcal{F} \neq \emptyset$.
Remes’ parameterization of self-similar sets

Let \mathcal{F} be an IFS over a complete metric space X that is generated by similarities; let s be the similarity dimension of \mathcal{F}.

Theorem

If $K_\mathcal{F}$ is connected and $\mathcal{H}^s(K_\mathcal{F}) > 0$, then $K_\mathcal{F}$ is a $(1/s)$-Hölder curve.

- Remes (1998) proved this when $X = \mathbb{R}^n$, where $\mathcal{H}^s(K_\mathcal{F}) > 0 \iff \text{SOSC} \iff \text{OSC} \Rightarrow \dim_H K_\mathcal{F} = s$ (Schief 1994)

- In complete metric spaces:
 $\mathcal{H}^s(K_\mathcal{F}) > 0 \Rightarrow \text{SOSC} \Rightarrow \dim_H K_\mathcal{F} = s$ (Schief 1996)

- Self-similar implies $K_\mathcal{F}$ with $\mathcal{H}^s(K_\mathcal{F}) > 0$ are s-Ahlfors regular

- To prove thm, embed $K_\mathcal{F}$ in ℓ_∞ and repeat Remes’ original proof

Open Set Condition: $\exists U$ open s.t. $\phi(U) \subseteq U$, $\phi(U) \cap \psi(U) = \emptyset$ for distinct $\phi, \psi \in \mathcal{F}$. Strong Open Set Condition: also $U \cap K_\mathcal{F} \neq \emptyset$.
Remes’ parameterization of self-similar sets

Let \mathcal{F} be an IFS over a complete metric space X that is generated by similarities; let s be the similarity dimension of \mathcal{F}.

Theorem

If $K_{\mathcal{F}}$ is connected and $\mathcal{H}^s(K_{\mathcal{F}}) > 0$, then $K_{\mathcal{F}}$ is a $(1/s)$-Hölder curve.

- Remes (1998) proved this when $X = \mathbb{R}^n$, where $\mathcal{H}^s(K_{\mathcal{F}}) > 0 \Leftrightarrow SOSC \Leftrightarrow OSC \Rightarrow \dim_H K_{\mathcal{F}} = s$ (Schief 1994)

- In complete metric spaces:
 $\mathcal{H}^s(K_{\mathcal{F}}) > 0 \Rightarrow SOSC \Rightarrow \dim_H K_{\mathcal{F}} = s$ (Schief 1996)

- Self-similar implies $K_{\mathcal{F}}$ with $\mathcal{H}^s(K_{\mathcal{F}}) > 0$ are s-Ahlfors regular

- To prove thm, embed $K_{\mathcal{F}}$ in ℓ_∞ and repeat Remes’ original proof

Open Set Condition: $\exists U$ open s.t. $\phi(U) \subseteq U$, $\phi(U) \cap \psi(U) = \emptyset$ for distinct $\phi, \psi \in \mathcal{F}$. Strong Open Set Condition: also $U \cap K_{\mathcal{F}} \neq \emptyset$.
Remes’ parameterization of self-similar sets

Let \mathcal{F} be an IFS over a complete metric space X that is **generated by similarities**; let s be the similarity dimension of \mathcal{F}.

Theorem

If $K_{\mathcal{F}}$ is connected and $\mathcal{H}^s(K_{\mathcal{F}}) > 0$, then $K_{\mathcal{F}}$ is a $(1/s)$-Hölder curve.

- Remes (1998) proved this when $X = \mathbb{R}^n$, where
 \[\mathcal{H}^s(K_{\mathcal{F}}) > 0 \iff \text{SOSC} \iff \text{OSC} \Rightarrow \dim_H K_{\mathcal{F}} = s \] (Schief 1994)
- In complete metric spaces:
 \[\mathcal{H}^s(K_{\mathcal{F}}) > 0 \Rightarrow \text{SOSC} \Rightarrow \dim_H K_{\mathcal{F}} = s \] (Schief 1996)
- Self-similar implies $K_{\mathcal{F}}$ with $\mathcal{H}^s(K_{\mathcal{F}}) > 0$ are s-Ahlfors regular
- To prove thm, embed $K_{\mathcal{F}}$ in ℓ_∞ and repeat Remes’ original proof

Open Set Condition: $\exists U$ open s.t. $\phi(U) \subseteq U$, $\phi(U) \cap \psi(U) = \emptyset$ for distinct $\phi, \psi \in \mathcal{F}$. **Strong Open Set Condition:** also $U \cap K_{\mathcal{F}} \neq \emptyset$.
Case Study: Bedford-McMullen Carpets

Let Σ be a Bedford-McMullen carpet (see diagram).

- **Similarity dimension is**
 \[
 s = \log_n (t_1 + \cdots + t_n)
 \]

McMullen (1984)

- $\dim_H \Sigma = \log_n \left(\sum_{j=1}^n t_j \right) \log_m(n)$
- $\dim_M \Sigma = \log_n(r) + \log_m \left(\sum_{j=1}^n t_j / r \right)$

Mackay (2011)

- If $m < n$ (self-affine), then
 \[
 \dim_A \Sigma = \log_n(r) + \log_m(t)
 \]
Case Study: Bedford-McMullen Carpets
Case Study: Bedford-McMullen Carpets

Theorem (B-Vellis arXiv October 2019)

Let $\Sigma \subset [0, 1]^2$ be a connected Bedford-McMullen carpet.

- If Σ is a line, Σ is (trivially) a 1-Hölder curve
- If Σ is the square, Σ is (well-known to be) a $(1/2)$-Hölder curve
- Otherwise, Σ is a $(1/s)$-Hölder curve, s similarity dimension

The exponents are sharp (they cannot be increased).

- Idea: Lift Σ to a self-similar set K in $([0, 1]^2, d)$ equipped with a partially snowflaked metric d via a Lipschitz map $F : K \rightarrow \Sigma$. Use Remes’ theorem upstairs to parameterize K. Then descend.
- If X doubling: $\mathcal{H}^s(K) > 0 \iff SOSC$ (Stella 1992 / Schief 1996)
- When does an IFS admit a Lipschitz lift to self-similar set in doubling space (or a β-space)?
Case Study: Bedford-McMullen Carpets

Theorem (B-Vellis arXiv October 2019)

Let $\Sigma \subset [0, 1]^2$ be a connected Bedford-McMullen carpet.

- If Σ is a line, Σ is (trivially) a 1-Hölder curve
- If Σ is the square, Σ is (well-known to be) a $(1/2)$-Hölder curve
- Otherwise, Σ is a $(1/s)$-Hölder curve, s similarity dimension

The exponents are sharp (they cannot be increased).

- Idea: Lift Σ to a self-similar set K in $([0, 1]^2, d)$ equipped with a partially snowflaked metric d via a Lipschitz map $F : K \to \Sigma$. Use Remes’ theorem upstairs to parameterize K. Then descend.

- If X doubling: $\mathcal{H}^s(K) > 0 \iff$ SOSC (Stella 1992 / Schief 1996)

- When does an IFS admit a Lipschitz lift to self-similar set in doubling space (or a β-space)?
Case Study: Bedford-McMullen Carpets

Theorem (B-Vellis arXiv October 2019)

Let $\Sigma \subset [0, 1]^2$ be a connected Bedford-McMullen carpet.

- If Σ is a line, Σ is (trivially) a 1-Hölder curve
- If Σ is the square, Σ is (well-known to be) a $(1/2)$-Hölder curve
- Otherwise, Σ is a $(1/s)$-Hölder curve, s similarity dimension

The exponents are sharp (they cannot be increased).

- Idea: Lift Σ to a self-similar set K in $([0, 1]^2, d)$ equipped with a partially snowflaked metric d via a Lipschitz map $F : K \to \Sigma$. Use Remes’ theorem upstairs to parameterize K. Then descend.
- If X doubling: $\mathcal{H}^s(K) > 0 \iff SOSC$ (Stella 1992 / Schief 1996)
- When does an IFS admit a Lipschitz lift to self-similar set in doubling space (or a β-space)?
Case Study: Bedford-McMullen Carpets

Theorem (B-Vellis arXiv October 2019)

Let $\Sigma \subset [0, 1]^2$ be a connected Bedford-McMullen carpet.

- If Σ is a line, Σ is (trivially) a 1-Hölder curve
- If Σ is the square, Σ is (well-known to be) a $(1/2)$-Hölder curve
- Otherwise, Σ is a $(1/s)$-Hölder curve, s similarity dimension

The exponents are sharp (they cannot be increased).

- Idea: Lift Σ to a self-similar set K in $([0, 1]^2, d)$ equipped with a partially snowflaked metric d via a Lipschitz map $F : K \to \Sigma$. Use Remes’ theorem upstairs to parameterize K. Then descend.

- If X doubling: $\mathcal{H}^s(K) > 0 \Leftrightarrow SOSC$ (Stella 1992 / Schief 1996)
- When does an IFS admit a Lipschitz lift to self-similar set in doubling space (or a β-space)?
Self-similar vs self-affine carpets and a conjecture

Σ be a connected self-similar / self-affine Bedford-McMullen carpet,
\(D = \text{Hausdorff dimension}, s = \text{similarity dimension} \) (sometimes \(s > 2 \)!

Self-Similar

\[
D = s, \ s \in [1, 2] \\
0 < \mathcal{H}^s(\Sigma) < \infty
\]

Self-Affine

\[
D < s, \ s \in [1, \infty) \\
\mathcal{H}^s(\Sigma) = 0
\]

Conjecture (B 2018): If \(\Gamma \subset \mathbb{R}^n \) is a \((1/s)\)-Hölder curve with \(\mathcal{H}^s(\Gamma) > 0 \), then at \(\mathcal{H}^s\)-a.e. \(x \in \Gamma \), all geometric blow-ups (tangent sets) of \(\Gamma \) at \(x \) are “self-similar” \((1/s)\)-Hölder images of \(\mathbb{R} \).
Self-similar vs self-affine carpets and a conjecture

Σ be a connected self-similar / self-affine Bedford-McMullen carpet, $D =$ Hausdorff dimension, $s =$ similarity dimension (sometimes $s > 2$)!

<table>
<thead>
<tr>
<th>Self-Similar</th>
<th>Self-Affine</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D = s, s \in [1, 2]$</td>
<td>$D < s, s \in [1, \infty)$</td>
</tr>
<tr>
<td>$0 < \mathcal{H}^s(\Sigma) < \infty$</td>
<td>$\mathcal{H}^s(\Sigma) = 0$</td>
</tr>
</tbody>
</table>

Conjecture (B 2018): If $\Gamma \subset \mathbb{R}^n$ is a $(1/s)$-Hölder curve with $\mathcal{H}^s(\Gamma) > 0$, then at \mathcal{H}^s-a.e. $x \in \Gamma$, all geometric blow-ups (tangent sets) of Γ at x are “self-similar” $(1/s)$-Hölder images of \mathbb{R}
Related and Future Work

A related, but different problem: What sets in a metric space are contained in a \((1/s)\)-Hölder curve?

- New result in quasiconvex metric spaces: Balogh and Züst arXiv 2019 (in summer)

Future work:

- We need to find good necessary conditions for a set to be (contained in) a \((1/s)\)-Hölder curve
- Applications to Geometry of Measures (cf. Lisa Naples’ talk), Metric Geometry. Random geometry? Singular integrals?
Thank you for listening!