
DIVISION ALGEBRAS OVER THE REAL NUMBERS

MATTHEW BADGER

Abstract. Midterm project for Math 2501, Abstract Algebra II,
at the University of Pittsburgh. After constructing the quaternions
and octonions, we establish the classifications of the associative,
normed and alternative division algebras over the real numbers.

1. Preliminaries

In this article, we introduce division algebras over the real numbers.
Our aim is to establish theorems of Frobenius, Hurwitz and Zorn, which
classify the associative, normed and alternative real division algebras,
up to isomorphism. For now, we postpone historical remarks to §5,
preferring to delve straight into the mathematics. Let us first agree on
some definitions.

Definition 1.1. Let F be a field. An algebra A over F is a pair (A,m),
where A is a finite-dimensional vector space over F and multiplication
m : A×A → A is an F-bilinear map; that is, for all λ ∈ F, x, y, z ∈ A,

m(x, λy + z) = λm(x, y) + m(x, z),

m(λx + y, z) = λm(x, z) + m(y, z).

Two algebras (A,m) and (B, n) over F are said to be isomorphic if
there is an invertible map φ : A → B such that for all x, y ∈ A,

φ(m(x, y)) = n(φ(x), φ(y)).

When clear from the context, we write m(x, y) = xy for all x, y ∈ A. a
Definition 1.2. Let A be an algebra over F. Then A is said to be

(1) alternative if x(xy) = (xx)y and x(yy) = (xy)y for all x, y ∈ A,
(2) associative if x(yz) = (xy)z for all x, y, z ∈ A,
(3) commutative if xy = yx for all x, y ∈ A, and
(4) unital if there is a 1 ∈ A such that x1 = x = 1x for all x ∈ A.

If A is unital, then the identity 1 is uniquely determined. a
Remark 1.3. Warning! Unless stated explicitly we do not assume that
an algebra A is alternative, associative, commutative or unital. a
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Lemma 1.4. Let A be an alternative algebra over F. Then A obeys

(1) the flexible law: x(yx) = (xy)x for all x, y ∈ A, and
(2) the Moufang identity: (zx)(yz) = z(xy)z for all x, y, z ∈ A.

If we define xn for n ∈ Z+ recursively by x1 = x and xn+1 = xnx, then

(3) A is power-associative: xmxn = xm+n for all x ∈ A, m, n ∈ Z+.

Proof. The associator [x, y, z] 7→ x(yz) − (xy)z for all x, y, z ∈ A is a
trilinear map A3 → A. Since A is alternative, the associator alternates :

[x, y, z] = −[y, x, z] = −[x, z, y] = −[z, y, x] for all x, y, z ∈ A.

To prove the first equality, for instance, observe that

0A = [x + y, x + y, z] (A alternative)

= [x, x, z] + [x, y, z] + [y, x, z] + [y, y, z] (linearity of [·, ·, ·])
= [x, y, z] + [y, x, z]. (A alternative)

Hence, [x, y, z] = −[y, x, z] for all x, y, z ∈ A. The remaining equalities
follow similarly.

For (1), observe that [x, y, x] = −[y, x, x] = 0A (since A alternative).
Thus, x(yx)−(xy)x = 0, or equivalently, x(yx) = (xy)x for all x, y ∈ A.

For (2), observe first that, when A is alternative, repeated use of the
identities above yields:

(zx)(yz)− ((zx)y)z = [zx, y, z] = [y, z, zx] = y(z2x)− (yz)(zx)

= y(z2x)− [yz, z, x]− (yz2)x

= [y, z2, x]− [yz, z, x] = [y, z2, x]− [x, yz, z]

= [y, z2, x]− x(yz2) + (x(yz))z

= [y, z2, x] + [x, y, z]z − [x, y, z2] = [x, y, z]z.

Therefore, if A is alternative, then

(zx)(xy) = [x, y, z]z + ((zx)y)z

= [x, y, z]z − [z, x, y]z + z(xy)z = z(xy)z

for all x, y, z ∈ A.
For (3), we apply induction, the flexible law and Moufang identity.

We first claim that xn+1 = xxn for all n ∈ Z+. Indeed, the base case
xx1 = x1x = x2 holds; and if xn+1 = xxn for some n ≥ 1, then by the
flexible law: xn+2 = xn+1x = (xxn)x = x(xnx) = xxn+1. Now because
x = x1 we have shown that xm+n = xmxn in the base case m = 1.
Assume for induction on m that that xm+n = xmxn for some m ≥ 1
and n ≥ 2 (the case n = 1 is obvious). Then, by the Moufang identity,
xm+1xn = (xxm)(xn−1x) = xxm+n−1x = xm+n+1, as required. ¤
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Definition 1.5. An algebra A over F is said to be a division algebra
if A is nonzero and xy = 0A ⇒ x = 0A or y = 0A for all x, y ∈ A. a
Remark 1.6. The term “division algebra” in Definition 1.5 comes
from the following proposition, which shows that, in such an algebra,
left and right division can be unambiguously performed. a
Proposition 1.7. Let A be an algebra over F. Then A is a division
algebra if, and only if, A is nonzero and for all a, b ∈ A, with b 6= 0A,
the equations bx = a and yb = a have unique solutions x, y ∈ A.

Proof. (⇒) Fix b ∈ A, say with b 6= 0A, and let φ : A → A be the
linear transformation defined by φ(x) = bx. If A is a division algebra,
then ker φ = {0A} and φ is injective. But A is finite-dimensional, so φ
is actually bijective. Thus, the equation bx = a has a unique solution.
Similarly, yb = a has a unique solution, by considering y 7→ yb.

(⇐) Suppose that xy = 0A. If x = 0A, then we’re done. Otherwise,
by assumption, if x 6= 0A, there is a unique y ∈ A such that xy = 0A.
But x0A = 0A, so y = 0A. Therefore, A is a division algebra. ¤
Corollary 1.8. Let A be a division algebra over F. If A is alternative,
then A is unital.

Proof. Fix b ∈ A such that b 6= 0A. By Proposition 1.7, because A
is a division algebra the equation yb = b has a unique solution y = 1.
Furthermore, 1(1b) = 1b. Since A is alternative, 12b = 1b which implies
(12−1)b = 0A and hence 12 = 1. It follows that 1(1x−x) = 1(1x)−1x =
12x− 1x = 0A. But 1 6= 0A, since b 6= 0A. Therefore, 1x− x = 0A and
1x = x for all x ∈ A. Similarly, x1 = x for all x ∈ A, by considering
the product (x1− x)1. Thus, A is unital. ¤
Remark 1.9. In the sequel we assume F = R and consider classes of
division algebras over R or “real division algebras” for short. a

The organization is as follows. In §2, we introduce the algebras of
quaternions H and octonions O. Together with the real and complex
numbers, these form the four classical examples of division algebras
over the real numbers. Under an appropriate identification,

R ⊂ C ⊂ H ⊂ O.

Yet, the 4-dimensional quaternions are a noncommutative field, and
the 8-dimensional octonions are a nonassociative alternative algebra.

In §3, we describe the Cayley-Dickson construction of ∗-algebras
(which are algebras with conjugation). When applied inductively to
the real numbers, this process yields a nice proof that the quaternions
and octonions are division algebras with the properties stated above.
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In §4, we establish Zorn’s theorem that (up to isomorphism) there are
exactly four alternative real division algebras: R, C, H and O. Then
the classifications of the associative and the normed division algebras
by Frobenius and Hurwitz follow as easy corollaries.

In §5, we outline the history of these classification theorems from
Frobenius through the recent characterization of the 2-dimensional and
the commutative real division algebras by Hübner and Petersson. And,
in §6, we recommend articles for the reader who is interested in learning
more about division algebras.

2. Quaternions and Octonions

The quaternions and octonions are alternative division algebras that
extend the real and complex numbers in a natural way.

Definition 2.1. Let H be the 4-dimensional real algebra defined by

H = span
R
{1, i, j, k}

with identity 1 whose multiplication satisfies

i j k
i −1 k −j
j −k −1 i
k j −i −1

We call H the algebra of quaternions. a
Remark 2.2. The key to multiplication of quaternions is Figure 1,
together with the rules

• 1 is the identity,
• i, j, k are square roots of −1.

If x, y, z ∈ {i, j, k} are located consecutively in the clockwise direction
(following the arrows) in Figure 1, then

xy = z.

If x, y, z ∈ {i, j, k} are located consecutively in the counterclockwise
direction (against the arrows) in Figure 1, then

xy = −z.

This completely determines multiplication using the distributive laws.
In §3, we will demonstrate that the quaternions are a noncommutative
associative division algebra. a
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Figure 1. Quaternion 3-cycle

Example 2.3. Evaluate the quaternion product (1 + i + k)(2j − 3k):

(1 + i + k)(2j − 3k)

= 1(2j − 3k) + i(2j − 3k) + k(2j − 3k) (distributive law)

= 2(1j)− 3(1k) + 2ij − 3ik + 2kj − 3k2 (distributive law)

= 2j − 3k + 2ij − 3ik + 2kj − 3k2 (1 identity)

= 2j − 3k + 2ij − 3ik + 2kj + 3(1) (k2 = −1)

= 2j − 3k + 2k + 3j − 2i + 3(1) (use Figure 1)

= 3(1)− 2i + 5j − k (collect terms)

By identifying the real numbers as a subset of the quaternions using
the natural inclusion λ ↪→ λ1 for all λ ∈ R, we may also write

(1 + i + k)(2j − 3k) = 3− 2i + 5j − k.

As an exercise, we recommend that the reader show that

(2j − 3k)(1 + i + k) = 3 + 2i− j − 5k,

in order to check the reader understands quaternion multiplication. a
Definition 2.4. Let x = a + bi + cj + dk ∈ H for some a, b, c, d ∈ R.
The conjugate of x, denoted by x 7→ x̄, is defined by

x̄ = a− bi− cj − dk ∈ H.

The norm of x, denoted by x 7→ ||x||, is defined by

||x|| = √
xx̄ ≥ 0. a
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Remark 2.5. If one checks that the quaternion norm is well-defined,
and xx̄ = x̄x then it follows that H is a division algebra. Indeed, given
0 6= x ∈ H, ||x|| > 0 and x−1 = ||x||−2x̄ is a full inverse to x:

xx−1 =
xx̄

||x||2 =
||x||2
||x||2 = 1 =

||x||2
||x||2 =

x̄x

||x||2 = x−1x

Hence, if xy = 0, then x = 0 or y = x−1xy = x−10 = 0 and, thus, H is
a division algebra. (This approach also requires that H is associative.)
Rather than take this approach, we prefer to apply the Cayley-Dickson
process described below. a
Definition 2.6. Let O be the 8-dimensional real algebra defined by

O = span
R
{1, e1, e2, e3, e4, e5, e6, e7}

with identity 1 whose multiplication satisfies

e1 e2 e3 e4 e5 e6 e7

e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e3 e6 −e1 e5 −e4 −e2 −1

We call O the algebra of octonions. a
Remark 2.7. While the multiplication table for the octonions may
seem incomprehensible, if one thinks of the ei as indexed by Z/7Z,
then the following patterns can be observed:

• square roots: e2
i = −1,

• anti-commuting: eiej = ek ⇔ ejei = −ek,
• index cycling: eiej = ek ⇔ ei+1ej+1 = ek+1,
• index doubling: eiej = ek ⇔ e2ie2j = e2k.

Together with the nontrivial product e1e2 = e4, these patterns allow
us to complete the multiplication table.

As before, we prefer the use of a diagram over a multiplication table.
The key to multiplication in the octonions is Figure 2, together with
the rules

• 1 is the identity,
• e1, e2, e3, e4, e5, e6, e7 are square roots of −1.

The Fano plane is a finite projective plane with 7 points and 7 lines,
each of which is incident to 3 points. Given any pair of distinct points



REAL DIVISION ALGEBRAS 7

Figure 2. Octonion Fano plane

ei and ej, there is a unique ek such that eiejek is a line on the plane.
If ei, ej, ek lie consecutively in the order of the arrows, then

eiej = ek.

If ei, ej, ek lie consecutively against the order of the arrows, then

eiej = −ek.

This completely determines multiplication using the distributive laws.
(As an aside, we note that index doubling in the multiplication table
is embedded into Figure 2 as follows: doubling the indices ei 7→ e2i

corresponds to rotating Figure 2 by 120◦ counterclockwise about e7.)
In §3, we will show that the octonions are an alternative nonassociative
division algebra. a
Example 2.8. It is easy to see that the octonions are nonassociative.
On one hand,

e1(e2e3) = e1e5 = e6.

On the other hand,

(e1e2)e3 = e4e3 = −e6.

As with the quaternions, we will identify the real numbers as a subset
of the octonions using the natural inclusion map λ ↪→ λ1 for all λ ∈ R.
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To test understanding of octonion multiplication, we recommend that
the reader show that for x = 1 + e1, y = 2e2 + 3e3, z = 4e4 − 5e5,

x(yz) = −8 + 8e1 − 15e2 + 10e3 − 15e4 − 12e5 + 12e6 + 10e7

and (xy)z = −8 + 8e1 − 15e2 + 10e3 + 15e4 + 12e5 + 12e6 − 10e7. a
Definition 2.9. Let x = a +

∑
i biei ∈ O for some a, b1, . . . , b7 ∈ R.

The conjugate of x, denoted by x 7→ x̄, is defined by

x̄ = a−
7∑

i=1

biei ∈ O.

The norm of x, denoted by x 7→ ||x||, is defined by

||x|| = √
xx̄ ≥ 0. a

Remark 2.10. If one checks that the octonion norm is well-defined,
and xx̄ = x̄x then it follows that O is a division algebra. Indeed, given
0 6= x ∈ O, ||x|| > 0 and x−1 = ||x||−2x̄ is a full inverse to x:

xx−1 =
xx̄

||x||2 =
||x||2
||x||2 = 1 =

||x||2
||x||2 =

x̄x

||x||2 = x−1x

Hence, if xy = 0, then x = 0 or y = x−1xy = x−10 = 0 and, thus, O is
a division algebra. (This approach also requires that O is alternative.)
Rather than take this approach, we prefer to apply the Cayley-Dickson
process which we now describe. a

3. Cayley-Dickson Process

The Cayley-Dickson process for constructing families of algebras with
“conjugation” explains why the complex numbers are commutative, but
not real; the quaternions are associative, but not commutative; and
the octonions are alternative, but not associative. It also explains why
R, C, H and O are division algebras, yet no division algebras extend
the octonions, like the octonions extend the quaternions. The process
mimics the construction of complex numbers as pairs of real numbers.

Definition 3.1. Let A be an algebra over R. Then A is said to be
a ∗-algebra if there exists a linear map called conjugation ∗ : A → A
(acting exponentially) such that

x∗∗ = x, (xy)∗ = y∗x∗, for all x, y ∈ A.

We call a ∗-algebra A real, if x∗ = x for all x ∈ A, and nicely-normed,
if A is unital, x + x∗ ∈ R and x∗x = xx∗ > 0 for all nonzero x ∈ A. a
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Example 3.2. Both the real numbers R and complex numbers C are
∗-algebras under the usual complex conjugation x∗ 7→ x̄ for all x ∈ C.
Both ∗-algebras are nicely-normed since both have an identity and

x + x∗ = x + x̄ = 2 Re x ∈ R and x∗x = xx∗ = xx̄ = |x|2 ≥ 0

for all x ∈ C. Moreover, R is real since x∗ = x̄ = x for all x ∈ R; yet,
C is not real since i∗ = ī = −i 6= i and i ∈ C. a
Definition 3.3. Let A be a nicely-normed ∗-algebra, and let x ∈ A.
The norm of x, denoted by x 7→ ||x||, is defined by

||x|| =
√

xx∗ ≥ 0.

If x 6= 0, the inverse of x, denoted by x 7→ x−1, is defined by

x−1 = ||x||−2x∗. a
Proposition 3.4. The norm and inverse defined above are well-defined.

Proof. Since the ∗-algebra A is nicely-normed, xx∗ ≥ 0 for all x ∈ A,
with equality if and only if x = 0. Thus,

√
xx∗ ≥ 0 exists and the norm

is well-defined for all x ∈ A. If x 6= 0, it follows that

xx−1 =
xx∗

||x||2 =
||x||2
||x||2 = 1 =

||x||2
||x||2 =

x∗x
||x||2 = x−1x

where xx∗ and x∗x commute again since A is nicely-normed. Therefore,
x−1 is the full inverse of x and well-defined for all nonzero x ∈ A. ¤

Corollary 3.5. Let A be a nicely-normed ∗-algebra. If A is alternative,
then A is a division algebra.

Proof. Let xy = 0 for some x, y ∈ A, and suppose that x 6= 0. To prove
A is a division algebra, we must show y = 0. Because A is alternative,
by the Moufang identity (Lemma 1.4.2),

yx−1 = 1(yx−1) = (x−1x)(yx−1) = x−1(xy)x−1 = x−10x−1 = 0

where x−1 = ||x||−2x∗ is well-defined by the previous proposition.
Hence, yx∗ = 0, which implies xy∗ = (yx∗)∗ = 0∗ = 0. Thus,

(♦) x(y + y∗) = xy + xy∗ = 0 + 0 = 0.

Since A is nicely-normed, y + y∗ ∈ R; but x 6= 0, so y + y∗ = 0 by (♦),
or equivalently, y = −y∗. Therefore, again since A is alternative,

−||y||2x = x(−yy∗) = x(yy) = (xy)y = 0y = 0.

We conclude that ||y|| = 0 which occurs if and only if y = 0. ¤
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Definition 3.6. Let A be a ∗-algebra. The Cayley-Dickson extension
of A, which we denote by A′, is the ∗-algebra A× A satisfying

addition: (a, b) + (c, d) = (a + c, b + d)

scalar product: λ(a, b) = (λa, λb)

multiplication: (a, b)(c, d) = (ac− db∗, a∗d + cb)

conjugation: (a, b)∗ = (a∗,−b)

for all a, b, c, d ∈ A and λ ∈ R. a
Example 3.7. Up to isomorphism: R′ = C, C′ = H, H′ = O.

Clearly R′ = C with (0, 1) = i. Since R is real, x∗ = x for all x ∈ R;
hence, the relations for multiplication and conjugation in R′ satisfy

(a, b)(c, d) = (ac− db, ad + cb) and (a, b)∗ = (a,−b)

for all a, b, c, d ∈ R where in C these satisfy

(a + bi)(c + di) = ac− db + (ad + cb)i and a + bi = a− bi.

The reader can similarly check the isomorphisms for C′ = H, H′ = O.
For the quaternions, make the identification:

i = (i, 0), j = (0, 1), and k = (0,−i).

For the octonions, make the identification:

e1 = (i, 0), e2 = (j, 0), e3 = (0, 1), e4 = (k, 0),

e5 = (0,−j), e6 = (0, k), and e7 = (0,−i). a
Theorem 3.8 (Properties of Extensions). Let A be a ∗-algebra. Then

(1) A′ is never real (unless trivially A = 0).
(2) A is real (and thus commutative) ⇔ A′ is commutative.
(3) A is commutative and associative ⇔ A′ is associative.
(4) A is associative and nicely-normed ⇔ A′ is alternative and

nicely-normed.
(5) A is nicely-normed ⇔ A′ is nicely-normed.

Proof. For (1), choose b ∈ A such that b 6= 0. Then (0, b) ∈ A′, but

(0, b)∗ = (0,−b) = −(0, b) 6= (0, b).

Thus, A′ is not real.
For (2), suppose first that A is real. Then A is also commutative since

for any a, b ∈ A, ab = (b∗a∗)∗ = (ba)∗ = ba. Hence, A′ is commutative,
since for any (a, b), (c, d) ∈ A′:

(a, b)(c, d) = (ac− db∗, a∗d + cb) = (ca− bd∗, d∗a + bc) = (c, d)(a, b).
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Conversely, suppose that A′ is commutative and let a ∈ A. Then

(a∗, 0) = (0, a)(0,−1) = (0,−1)(0, a) = (a, 0).

Hence, a∗ = a for all a ∈ A and A is real.
For (3), if A is commutative and associative, then A′ is associative.

Indeed, for all (a, b), (c, d), (e, f) ∈ A′, by the assumed properties of A:

(a, b)((c, d)(e, f))

= (a, b)(ce− fd∗, c∗f + ed)

= (a(ce− fd∗)− (c∗f + ed)b∗, a∗(c∗f + ed) + (ce− fd∗)b)

= (ace− afd∗ − c∗fb∗ − edb∗, a∗c∗f + a∗ed + ceb− fd∗b)

= (ace− db∗e− fd∗a− fb∗c∗, c∗a∗f − bd∗f + ea∗d + ecb)

= ((ac− db∗)e− f(a∗d + cb)∗, (ac− db∗)∗f + e(a∗d + cb))

= (ac− db∗, a∗d + cb)(e, f)

= ((a, b)(c, d))(e, f).

On the other hand, suppose that A′ is associative and let a, b, c ∈ A.
Then A is commutative, since

(0, ab) = (a∗, 0)(0, b) = ((0, a)(0,−1))(0, b)

= (0, a)((0,−1)(0, b)) = (0, a)(b, 0) = (0, ba).

Also A is associative, since

(a(bc), 0) = (a, 0)(bc, 0) = (a, 0)((b, 0)(c, 0))

= ((a, 0)(b, 0))(c, 0) = (ab, 0)(c, 0) = ((ab)c, 0).

For (5), in the forward direction, suppose that A is nicely-normed.
Let (a, b) ∈ A′. Then (a, b)+(a, b)∗ = (a, b)+(a∗,−b) = (a+a∗, 0) ∈ R,
since A is nicely-normed and a+a∗ ∈ R. Also, since A is nicely-normed,
if a 6= 0 or b 6= 0 (so that (a, b) 6= 0), then

(a, b)(a, b)∗ = (a, b)(a∗,−b)

= (aa∗ + bb∗,−a∗b + a∗b)

= (aa∗ + bb∗, 0) = (aa∗, 0) + (bb∗, 0) > 0 + 0 = 0.

= (a∗a + b∗b, ab− ab)

(a, b)∗(a, b) = (a∗,−b)(a, b)

Hence, A′ is nicely-normed. In the reverse, assume A′ is nicely-normed
and let a ∈ A. Then a + a∗ ≡ (a, 0) + (a∗, 0) = (a, 0) + (a, 0)∗ ∈ R.
Similarly, if also a 6= 0, then aa∗ ≡ (a, 0)(a∗, 0) = (a, 0)(a, 0)∗ > 0 and
a∗a ≡ (a∗, 0)(a, 0) = (a, 0)∗(a, 0) > 0. Thus, A is nicely-normed.
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For (4), suppose first that A is associative and nicely-normed. Then
A′ is nicely-normed by (5) and it remains to show that A′ is alternative.
Let (a, b), (c, d) ∈ A′. Then, since A is associative and nicely-normed,
the left alternative law holds:

(a, b)((a, b)(c, d))

= (a, b)(ac− db∗, a∗d + cb)

= (a(ac− db∗)− (a∗d + cb)b∗, a∗(a∗d + cb) + (ac− db∗)b)

= (aac− adb∗ − a∗db∗ − cbb∗, a∗a∗d + a∗cb + aca− db∗a)

= (aac− bb∗c− db∗a− db∗a∗, a∗a∗d− b∗bd + ca∗b + cab)

= ((aa− bb∗)c− d(a∗b + ab)∗, (aa− bb∗)∗d + c(a∗b + ab))

= (aa− bb∗, a∗b + ab)(c, d)

= ((a, b)(a, b))(c, d).

Similarly, the right alternative law holds:

(a, b)((c, d)(c, d))

= (a, b)(cc− dd∗, c∗d + cd)

= (a(cc− dd∗)− (c∗d + cd)b∗, a∗(c∗d + cd) + (cc− dd∗)b)

= (acc− add∗ − c∗db∗ + cdb∗, a∗c∗d + a∗cd + ccb− dd∗b)

= (acc− db∗c− dd∗a + db∗c∗, c∗a∗d− bd∗d + ca∗d + ccb)

= ((ac− db∗)c− d(a∗d + cb)∗, (ac− db∗)∗d + c(a∗d + cb))

= (ac− db∗, a∗d + cb)(c, d)

= ((a, b)(c, d))(c, d).

Conversely, now suppose that A′ is alternative and nicely-normed.
Then A is nicely-normed by (5); we must show that A is associative.
Let a, b, c ∈ A. We leave it as a challenge for the reader to show
a(bc) = (ab)c. ¤
Corollary 3.9.

R is a real commutative associative nicely-normed ∗-algebra ⇒
C is a commutative associative nicely-normed ∗-algebra ⇒

H is an associative nicely-normed ∗-algebra ⇒
O is an alternative nicely-normed ∗-algebra ⇒

and therefore R, C, H and O are division algebras.

Remark 3.10. Given any nonzero ∗-algebra A, the Cayley-Dickson
extension A′ is clearly a ∗-algebra with twice the dimension of A.
Hence, with initial input A = R, taking Cayley-Dickson extensions
inductively yields a nested sequence of real algebras with conjugation
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beginning with the 2-dimensional complex numbers, the 4-dimensional
quaternions, and the 8-dimensional octonions. Yet, as we illustrated
by Theorem 3.8, each extension loses a property of its predecessor: the
complex numbers are no longer real, the quaternions are no longer com-
mutative, the octonions are no longer associative, and the sedonions
O′ are no longer alternative (but are power-associative). Nevertheless,
nonzero sedonions have inverses by Theorem 3.8.5 and Proposition 3.4.
But we cannot apply Corollary 3.5 to O′. In fact, the sedonions have
zero divisors! Therefore, only the first four algebras in the sequence
R,C,H,O,O′,O′′, . . . are division algebras. This fact is a special case
of the (1,2,4,8)-Theorem discussed in §5. See [12] and [15] for references
on the sedonions. a

4. Alternative Division Algebras

Our proof of the classification of alternative real division algebras
follows the presentation given by Oneto in [16]. We then obtain the
classifications of associative and normed division algebras as corollaries.

Throughout this section, we let D be a fixed alternative real division
algebra; recall that D is unital, by Corollary 1.8, say with identity 1.
Let R be the subalgebra of D induced by the inclusion λ ↪→ λ1 for all
λ ∈ R so that R is naturally isomorphic to R.

Lemma 4.1. If x ∈ D, then x2 ∈ Rx + R.

Proof. Let R[X] denote the polynomial algebra with indeterminant X
and coefficients in R. Because D is power-associative (Lemma 1.4.3),
the specialization R[X] → D given by X 7→ x extends to a morphism
of algebras. The set of powers {1, x, x2, x3, . . . } of an element x ∈ D is
linearly dependent, since D has finite dimension. Since a polynomial
in R[X] ∼= R[X] is a product of polynomials of degree one or two, and
since D has no zero divisors, we conclude that x satisfies a linear or
quadratic equation with coefficients in R. In either case, we can write
x2 = ax + b for some coefficients a, b ∈ R. ¤
Lemma 4.2. If D 6= R, then there exists i ∈ D such that i2 = −1, and
C := R+Ri is isomorphic to C. Furthermore, C = {x ∈ D : xi = ix},
and setting C− := {x ∈ D : xi = −ix} we have D = C ⊕ C−.

Proof. Pick x ∈ D\R. By Lemma 1, x2 = ax+ b for some a, b ∈ R and
so (x − a

2
)2 ∈ R. Since x 6∈ R, we must have (x − a

2
)2 = −c2 for some

c ∈ R. Setting i := c−1(x− a
2
), we have found an i ∈ D with i2 = −1.

Define C := R + Ri, which is isomorphic to C.
It is clear that R + Ri ⊆ {x ∈ D : xi = ix}. To show equality,

suppose that x ∈ D such that xi = ix. If x ∈ R, then x ∈ R + Ri
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trivially. Otherwise, if x 6∈ R, then (arguing as before) there exist
b, d ∈ R with (x− b

2
)2 = −d2 = (id)2. But since xi = ix,

(
x− b

2

)2

− (id)2 =

(
x− b

2
+ id

)(
x− b

2
− id

)
= 0

and by the division property x = b
2
± id, so x ∈ R + Ri. Hence, we

have shown C = {x ∈ D : xi = ix}.
Let C− := {x ∈ D : xi = −ix}. Obviously C− is a subspace of D

and C ∩ C− = 0. To show D = C ⊕ C−, it remains to prove that
D = C + C−. But this is a consequence of the identity:

(♣) x =
1

2
(x− ixi) +

1

2
(x + ixi)

where x− ixi ∈ C and x+ ixi ∈ C− by the alternative laws and by the
flexible law (Lemma 1.4.1). ¤
Lemma 4.3. If x, y ∈ D anticommute, then x2 and y commute.

Proof. Let x, y ∈ D such that xy = −yx. We apply the alternative and
flexible laws: x2y = x(xy) = −x(yx) = −(xy)x = (yx)x = yx2. ¤
Lemma 4.4. If x, y ∈ D anticommute, then x(yz) = −y(xz) and
(zx)y = −(zy)x for all z ∈ D.

Proof. For all x, y, z ∈ D, [x, y, z] + [y, x, z] = 0, since D is alternative.
Since also xy + yx = 0:

0 = [x, y, z] + [y, x, z] + (xy + yx)z = x(yz) + y(xz).

Thus, x(yz) = −y(xz). Similarly, (zx)y = −(zy)x. ¤
Lemma 4.5. If D 6⊆ C, then there exists j ∈ C− such that j2 = −1,
and H := C + Cj is isomorphic to H. Furthermore, writing k := ij,
H = {x ∈ D : xk = (xi)j}, and setting H− := {x ∈ D : xk = −(xi)j}
we have D = H ⊕H−.

Proof. Pick x ∈ C− such that x 6= 0. By Lemma 4.3, Lemma 4.2
and Lemma 4.1 we have x ∈ C ∩ (R + Rx) but Rx ⊆ C− and since
D = C ⊕ C−, x2 ∈ R. If x2 > 0 then x ∈ R, which contradicts
D = C ⊕ C−. Hence, x2 = −c2 for some nonzero c ∈ R. Setting
j := c−1x, we obtain j2 = −1 and ji = −ij. Writing k := ij, we can
deduce the quaternion identities:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

For example, by the Moufang identity, k2 = (ij)(ji) = −(ij)(ji) =
−ij2i = i2 = −1. Define H := C + Cj, which is isomorphic to H.
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Since H is associative, H ⊆ {x ∈ D : xk = (xi)j}. For this proof
only, we abbreviate K := {x ∈ D : xk = (xi)j}. To prove the reverse
inclusion and establish equality, we must first establish:

(♠) K = C ⊕ (C− ∩K).

By Lemma 4.2 and (♣), it suffices to verify: if x ∈ K, then x+ixi ∈ K.
From Lemma 4.4 and the Moufang identity we have:

(x + ixi)k = xk − i(xk)i = xk − (ix)(ki) = xk − (ix)j.

By the right alternative law:

((x + ixi)i)j = (xi)j − (ix)j.

But if x ∈ K, then xk = (xi)j and so x + ixi ∈ H and (♠) holds.
Right multiplication by j defines a linear transformation T (x) 7→ xj

that maps K into itself. In fact, if x ∈ K, then by Lemma 4.4:

(xj)k = −(xk)j = −((xi)j)j = xi

((xj)i)j = −((xj)j)i = xi.

Hence xj ∈ K. Also, T interchanges C and C− ∩K. Indeed, we have:

(xj)i = −(xi)j = −(ix)j = −i(xj)

with the last equality since 0 = [x, i, j] = −[i, x, j] = −i(xj) + (ix)j.
Hence, if x ∈ C, then xj ∈ C− ∩ K. Similarly, if x ∈ C− ∩ K, then
xj ∈ C. But T is an automorphism (its inverse is T−1(x) 7→ −xj).
Thus, dim(C ′ ∩ K) = dim(C) = 2 and by (♠) K is a 4-dimensional
subspace. Thus, because H ⊆ K, H = K = {x ∈ D : xk = (xi)j}.

Define H− = {x ∈ D : xk = −(xi)j}, which is obviously a subspace
such that H ∩ H− = {0}. To show that D = H ⊕ H−, it remains to
prove D = H + H−. We use the identity

x =
1

2
(x− ((xi)j)k) +

1

2
(x + ((xi)j)k).

By this identity, it suffices to verify that x − ((xi)j)k ∈ H and x +
((xi)j)k ∈ H−. For the former, by Lemma 4.4 and alternative laws:

(x + ((xi)j)k)k = xk − xij

(x + ((xi)j)k)ij = xij + xi2jkj = xij − ((xi)j)k = xij − xk

so x + ((xi)j)k ∈ H. The latter inclusion holds similarly. Therefore,
D = H ⊕H−, as desired. ¤

Lemma 4.6. If x ∈ H−, then x anticommutes with i, j and k.
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Proof. Let x ∈ X−. By definition, (xi)j = −k. First, we show x anti-
commutes with k. We have xk = 1

2
xk+ 1

2
xk = 1

2
(ij)− 1

2
(xi)j = 1

2
[x, i, j].

But xk = −(xi)j implies x = [(xi)j]k. By the Moufang identity:

kx = [k(xi)](jk) = [k(xi)]i = [(ij)(xi)]i = {[i(jx)]i}i = −i(jx)

and so kx = −1
2
[i, j, x] = −1

2
[x, i, j] = −xk.

Second, we show x anticommutes with j. By Lemma 4.4, we have
x = −[(xi)k]j (since x ∈ H−). By the Moufang identity:

jx = −[j(xi)](kj) = [j(xi)]i = −[(ik)(xi)]i = −[i(kx)i]i = i(kx).

Hence, jx = 1
2
[i, k, x] = 1

2
[x, i, k] = −1

2
xj − 1

2
(xi)k = −xj.

Finally, x anticommutes with i, since x anticommutes with j and k:
xi = (xk)j = −(kx)j = (kj)x = −ix. ¤

Lemma 4.7. If D 6⊆ H, then there exists h ∈ H− such that h2 = −1.

Proof. Let x ∈ H−, say with x 6= 0. By Lemma 4.6, x ∈ C− and from
Lemma 4.3, Lemma 4.2 and Lemma 4.1 we find: x2 ∈ C∩(R+Rx) = R.
But x 6∈ R (since x ∈ H−), thus x2 = −c2 for some nonzero c ∈ R.
Setting h = c−1x, the claim follows. ¤

Theorem 4.8 (Zorn). If A is an alternative real division algebra, then
A is isomorphic to R, C, H or O.

Proof. Let us apply the framework we developed above with D = A.
If D = R, then D is isomorphic to R, by the paragraph proceeding
Lemma 4.1. Otherwise, by Lemma 4.2, D contains an algebra C which
is isomorphic to C. If D = C, we’re done. Otherwise, by Lemma 4.5,
D contains an algebra H which is isomorphic to H. Again, if D = H,
we’re done. Suppose now that D 6⊆ H.

By Lemma 4.5 and Lemma 4.7, D = H ⊕ H− and there exists
h ∈ H− such that h2 = −1. The mapping T (x) 7→ xh defines a
linear automorphism of D (since D is alternative, T has an inverse
T−1(x) 7→ −xh). Observe that T interchanges H and H−. If x ∈ H,
then by Lemma 4.4 and Lemma 4.6,

T (x)k = (xh)k = −(xk)h = −((xi)j)h = −((xh)i)j.

Hence, if x ∈ H, then T (x) ∈ H−. Similarly, if x ∈ H−, then T (x) ∈ H.
Thus, dim H− = dim H = 4 (since H ∼= H), and it follows that

dim(D) = dim(H ⊕H−) = dim(H) + dim(H−) = 8.

It also follows that H− = Hh and {h, ih, jh, kh} is a basis of H−.
Therefore, {1, i, j, k, h, ih, jh, kh} is a basis for D. It now remains to
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compute the multiplication table for D. For instance,

(ih)(kh) = −(hi)(kh) = −h(ik)h = hjh = (−jh)h = j,

(ih)(ih) = −(ih)(hi) = −ih2i = i2 = −1.

A complete multiplication table for D is given by:

i j ih k kh jh −h
i −1 k −h −j jh −kh −ih
j −k −1 kh i −ih −h −jh

ih h −kh −1 jh j −k i
k j −i −jh −1 −h ih −kh

kh −jh ih −j h −1 i k
jh kh h k −ih −i −1 j
−h ih jh −i kh −k −j −1

By our chosen ordering of the table (we recommend that the reader
relabel Figure 2), we clearly have D ∼= O, given explicitly by e1 7→ i,
e2 7→ j, e3 7→ ih, e4 7→ k, e5 7→ kh, e6 7→ jh and e7 7→ −h.

We have thus shown that an alternative real division algebra A is
isomorphic to either R, C, H or O. ¤

Corollary 4.9 (Frobenius). If A is an associative real division algebra,
then A is isomorphic to R, C or H.

Proof. Since A is associative, A is alternative. Hence, by Theorem 4.8,
A is isomorphic to R, C, H or O. But O is not associative, which is
preserved under isomorphism. Thus, A is isomorphic to R, C or H. ¤

Definition 4.10. Let A be a real division algebra with identity 1.
Then A is said to be normed if there is an inner product (·, ·) on A
such that

(♥) (xy, xy) = (x, x)(y, y) for all x, y ∈ A. a
Corollary 4.11 (Hurwitz). If A is a normed real division algebra, then
A is isomorphic to R, C, H or O.

Proof. By Theorem 4.8, it suffices to show that A is alternative. Write
x+x′ in place of x in (♥) and use linearity of the inner product to find

(xy, xy) + 2(xy, x′y) + (x′y, x′y) = ((x, x) + 2(x, x′) + (x′, x′))(y, y).

Apply (♥) to the left hand side and cancel like terms to yield

(♥1) (xy, x′y) = (x, x′)(y, y).
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Next, write y + y′ in place of y and use linearity again to obtain

(x′y, xy) + (x′y′, xy) + (x′y, xy′) + (x′y′, xy′)

= (x, x′)((y, y) + 2(y, y′) + (y′, y′)).

Apply (♥1) to the left hand side and cancel like terms to find

(♥2) (xy, x′y′) + (xy′, x′y) = 2(x, x′)(y, y′) for all x, x′, y, y′ ∈ A.

Applying (♥2) with

(3) x′ = z and y′ = y, (4) x′ = x and y′ = z,
(5) x′ = z and y′ = 1, (6) x′ = 1 and y′ = z,

we obtain, respectively,

(♥3) (xy, zy) = (x, z)(y, y) for all x, y, z ∈ A,

(♥4) (xy, xz) = (x, x)(y, z) for all x, y, z ∈ A,

(♥5) (xy, z) + (x, zy) = 2(y, 1)(x, z) for all x, y, z ∈ A,

(♥6) (xy, z) + (xz, y) = 2(x, 1)(y, z) for all x, y, z ∈ A.

Now, substitute (xy) for x in (♥5) and substitute (xz) for z in (♥6).
From (♥3) and (♥4) it follows that

((xy)y, z) + (y, y)(x, z) = 2(y, 1)(xy, z) for all x, y, z ∈ A,

(x(xz), y) + (x, x)(y, z) = 2(x, 1)(y, xz) for all x, y, z ∈ A.

Hence,

((xy)y + (y, y)x− 2(y, 1)xy, z) = 0 for all z,

(x(xz) + (x, x)z − 2(x, 1)xz, y) = 0 for all y.

Thus,

(♥7) (xy)y = 2(y, 1)xy − (y, y)x for all x, y ∈ A,

(♥8) x(xy) = 2(x, 1)xy − (x, x)y for all x, y ∈ A.

Putting y = 1 in (♥8), we obtain

(♥9) x2 = 2(x, 1)x− (x, x) for all x ∈ A.

Finally, right multiply (♥9) by y, then compare with (♥8):

(x2)y = x(xy).

And left multiply y2 = 2(y, 1)y − (y, y) by x, then compare with (♥7):

x(y2) = (xy)y.

Therefore, A is alternative, as desired. ¤
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Remark 4.12. The careful reader will notice that we have not shown
H and O are normed algebras. Given A = H or O, define an inner
product on A by (·, ·) : A × A → R by (x, y) = xȳ for all x, y ∈ A.
Then the reader can show that (xy, xy) = (x, x)(y, y) for all x, y ∈ A by
direct calculation or by appealing to the framework for nicely-normed
∗-algebras developed in §3. a

5. Historical Remarks

The quaternions were the first noncommutative structure studied.
Fascinated by his construction of the complex numbers as a pair of real
numbers, Sir William Rowan Hamilton looked for a system of triples
that satisfied the nice properties of the real and the complex numbers.
But since there are no 3-dimensional real division algebras, Hamilton’s
attempts failed. Fortunately, Hamilton did not stop searching...

As the story goes, in October 1843, Hamilton was out walking with
his wife in Dublin, when he discovered the quaternions. He later wrote,
“That is to say, I then and there felt the galvanic circuit of thought
close; and the sparks which fell from it were the fundamental equa-
tions between i, j, k; exactly such as I have used them every since.”
Then, in an act of mathematical vandalism, he carved his equations
into the Brougham Bridge: i2 = j2 = k2 = ijk = −1. The next day,
Hamilton wrote to his friend John T. Graves about his discovery. Two
months later, in December 1843, Graves replied with a description of
his “octaves”—the octonions. Thus, the discovery of the quaternions
launched the development of hypercomplex algebras.

The classification of real division algebras began in 1878, when Georg
Frobenius [7] showed that (up to isomorphism) there are exactly three
such algebras which are associative: the real numbers R, the complex
numbers C, and the quaternions H. In 1898, Adolph Hurwitz [10]
showed secondly that the octonions are the only nonassociative real
division algebra with a multiplicative norm. Then, in 1930, Max Zorn
[19] generalized the results of Frobenius and Hurwitz, proving that R,
C, H and O are the only alternative real division algebras.

In 1940, topologist Heinz Hopf [9] showed that (as vector spaces)
division algebras over the real numbers necessarily have dimension 2n,
for some integer n ≥ 0. Of course, the four classic examples show the
existence of real division algebras in dimensions 1, 2, 4 and 8. In 1958,
Rauol Bott and John Milnor [3] and Michel Kervaire [13] independently
proved the deep result that real division algebras in higher dimensions
do not exist:
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(1,2,4,8)-Theorem. Let A be a division algebra over the real numbers.
Then A has dimension either 1, 2, 4 or 8.

To date, the (1,2,4,8)-Theorem has avoided a purely algebraic proof.
Indeed the Bott-Milnor-Kervaire proofs of the (1,2,4,8)-Theorem are
obtained as corollaries to a result on a topological property, called the
parallelizability of the n-sphere.

It is easy to show that any 1-dimensional real division algebra is
isomorphic to the real numbers. Indeed, if A is any such an algebra,
then A = Ra for some nonzero a ∈ A. Since A is a division algebra
the equation xa = a has a unique solution µa, for some nonzero µ ∈ R.
Then µa is an identity for A: because µa2 = a, for any λa ∈ A,
(µa)(λa) = (λa)(µa) = (λµ)a2 = λ(µa2) = λa. Therefore, since A has
dimension 1, the map λ ↪→ λ(µa) for all λ ∈ R gives the isomorphism.

In higher dimensions, however, the picture is not as simple. Consider:

Example 5.1. The real division algebra (C, τ) with multiplication

τ(x, y) = x̄ȳ for all x, y ∈ C
is commutative, nonalternative and nonunital. a

The classification of 2-dimensional real division algebras began in
1983 when Althoen and Kugler [1] gave neccessary conditions on the
multiplications tables of real division algebras in dimension 2. Sufficient
conditions were provided in 1985 by Burdugan [4] (without proof) and
also in 1998 by Gottschling [8]. At the heart of each of these papers is
a theorem which states a 2-dimensional real division algebra has either
1, 2 or 3 idempotents (nonzero elements e such that e2 = e).

Another famous theorem of Hopf states that any commutative real
division algebra has dimension at most 2. The classification of all the
commutative division algebras was completed in 1983 by Kantor and
Solodovnikov in [14]. In view of the remarks above, a commutative real
division algebra is isomorphic to either the real numbers or a subset of
the 2-dimensional real division algebras classified by Althoen-Kugler.

In 2004, Hübner and Peterssen [11] published a different approach to
the classification of 2-dimensional (and also commutative) real division
algebras. Instead of considering the number of idempotents and placing
constraints on the multiplication tables of the algebra, they write the
isomorphism classes in the form C(f,g) where (f, g) ∈ GL(R2)×GL(R2)
with multiplication m satisfying m(x, y) = f(x)g(y) for all x, y ∈ C.
For instance, C(τ,τ) is given by Example 5.1 above, where we may think
of τ as a reflection in the x-axis. Hübner and Peterssen show there are
four families of endomorphism pairs (f, g) which yield division algebras.
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6. Suggested Reading

Our interest in division algebras developed after reading John Baez’
excellent survey [2] on the octonions. With the classification of the 4-
and the 8-dimensional real division algebras still an incomplete task,
this area is wide open for research. Of particular interest, we would
like to see a purely algebraic proof of the (1,2,4,8)-Theorem. See [5],
which discusses the dimensions of division algebras over arbitrary fields,
and [11], for details on the Hübner-Petersson classification of the 2-
dimensional and commutative real division algebras. Finally, we would
recommend [6] for a good general reference (very readable!) on the
quaternions, octonions and real division algebras.
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